Suppr超能文献

道路网络结构分析:一种基于网络科学的初步方法。

Road networks structure analysis: A preliminary network science-based approach.

作者信息

Reza Selim, Ferreira Marta Campos, Machado J J M, Tavares João Manuel R S

机构信息

Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.

Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.

出版信息

Ann Math Artif Intell. 2022 Sep 29:1-20. doi: 10.1007/s10472-022-09818-x.

Abstract

Road network studies attracted unprecedented and overwhelming interest in recent years due to the clear relationship between human existence and city evolution. Current studies cover many aspects of a road network, for example, road feature extraction from video/image data, road map generalisation, traffic simulation, optimisation of optimal route finding problems, and traffic state prediction. However, analysing road networks as a complex graph is a field to explore. This study presents comparative studies on the Porto, in Portugal, road network sections, mainly of Matosinhos, Paranhos, and Maia municipalities, regarding degree distributions, clustering coefficients, centrality measures, connected components, k-nearest neighbours, and shortest paths. Further insights into the networks took into account the community structures, page rank, and small-world analysis. The results show that the information exchange efficiency of Matosinhos is 0.8, which is 10 and 12.8% more significant than that of the Maia and Paranhos networks, respectively. Other findings stated are: (1) the studied road networks are very accessible and densely linked; (2) they are small-world in nature, with an average length of the shortest pathways between any two roads of 29.17 units, which as found in the scenario of the Maia road network; and (3) the most critical intersections of the studied network are 'Avenida da Boavista, 4100-119 Porto (latitude: 41.157944, longitude: - 8.629105)', and 'Autoestrada do Norte, Porto (latitude: 41.1687869, longitude: - 8.6400656)', based on the analysis of centrality measures.

摘要

由于人类生存与城市发展之间存在明确的关系,道路网络研究在近年来引起了前所未有的广泛关注。当前的研究涵盖了道路网络的许多方面,例如从视频/图像数据中提取道路特征、道路地图概括、交通模拟、最优路径查找问题的优化以及交通状态预测。然而,将道路网络作为一个复杂网络进行分析仍是一个有待探索的领域。本研究对葡萄牙波尔图市主要是马托西纽什、帕拉尼奥斯和马亚市的道路网络路段进行了比较研究,涉及度分布、聚类系数、中心性度量、连通分量、k近邻和最短路径。对这些网络的进一步洞察考虑了社区结构、网页排名和小世界分析。结果表明,马托西纽什的信息交换效率为0.8,分别比马亚和帕拉尼奥斯网络的信息交换效率高出10%和12.8%。其他研究结果如下:(1)所研究的道路网络非常容易到达且连接密集;(2)它们本质上是小世界网络,任意两条道路之间最短路径的平均长度为29.17个单位,这在马亚道路网络的情况中也有发现;(3)根据中心性度量分析,所研究网络中最关键的交叉路口是“波尔图博阿维斯塔大道4100 - 119(纬度:41.157944,经度:-8.629105)”和“波尔图北高速公路(纬度:41.1687869,经度:-8.6400656)”。

相似文献

2
Where to look for power Laws in urban road networks?在哪里寻找城市道路网络中的幂律?
Appl Netw Sci. 2018;3(1):4. doi: 10.1007/s41109-018-0060-9. Epub 2018 Apr 4.
3
Cycle Based Network Centrality.基于循环的网络中心性
Sci Rep. 2018 Aug 6;8(1):11749. doi: 10.1038/s41598-018-30249-4.
6
Investigation of road network features and safety performance.道路网络特征与安全性能研究。
Accid Anal Prev. 2013 Jul;56:22-31. doi: 10.1016/j.aap.2013.02.026. Epub 2013 Mar 26.

本文引用的文献

2
City size based scaling of the urban internal nodes layout.基于城市规模的城市内部节点布局缩放。
PLoS One. 2021 Apr 23;16(4):e0250348. doi: 10.1371/journal.pone.0250348. eCollection 2021.
3
Exploring the evolution of London's street network in the information space: a dual approach.探索信息空间中伦敦街道网络的演变:一种双重方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):012805. doi: 10.1103/PhysRevE.89.012805. Epub 2014 Jan 13.
6
Centrality measures in spatial networks of urban streets.城市街道空间网络中的中心性度量
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 2):036125. doi: 10.1103/PhysRevE.73.036125. Epub 2006 Mar 24.
7
Finding community structure in very large networks.在超大型网络中寻找社区结构。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066111. doi: 10.1103/PhysRevE.70.066111. Epub 2004 Dec 6.
8
The architecture of complex weighted networks.复杂加权网络的架构
Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3747-52. doi: 10.1073/pnas.0400087101. Epub 2004 Mar 8.
9
Community structure in social and biological networks.社会和生物网络中的群落结构。
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6. doi: 10.1073/pnas.122653799.
10
Emergence of scaling in random networks.随机网络中幂律分布的出现。
Science. 1999 Oct 15;286(5439):509-12. doi: 10.1126/science.286.5439.509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验