Suppr超能文献

基于机器学习的神经学回归的透明质量优化

Transparent Quality Optimization for Machine Learning-Based Regression in Neurology.

作者信息

Wendt Karsten, Trentzsch Katrin, Haase Rocco, Weidemann Marie Luise, Weidemann Robin, Aßmann Uwe, Ziemssen Tjalf

机构信息

Software Technology Group, Technische Universität Dresden, 01187 Dresden, Germany.

Center of Clinical Neuroscience, Neurological Clinic, University Hospital Carl Gustav Carus, 01307 Dresden, Germany.

出版信息

J Pers Med. 2022 May 31;12(6):908. doi: 10.3390/jpm12060908.

Abstract

The clinical monitoring of walking generates enormous amounts of data that contain extremely valuable information. Therefore, machine learning (ML) has rapidly entered the research arena to analyze and make predictions from large heterogeneous datasets. Such data-driven ML-based applications for various domains become increasingly applicable, and thus their software qualities are taken into focus. This work provides a proof of concept for applying state-of-the-art ML technology to predict the distance travelled of the 2-min walk test, an important neurological measurement which is an indicator of walking endurance. A transparent lean approach was emphasized to optimize the results in an explainable way and simultaneously meet the specified software requirements for a generic approach. It is a general-purpose strategy as a fractional−factorial design benchmark combined with standardized quality metrics based on a minimal technology build and a resulting optimized software prototype. Based on 400 training and 100 validation data, the achieved prediction yielded a relative error of 6.1% distributed over multiple experiments with an optimized configuration. The Adadelta algorithm (LR=0.000814, fModelSpread=5, nModelDepth=6, nepoch=1000) performed as the best model, with 90% of the predictions with an absolute error of <15 m. Factors such as gender, age, disease duration, or use of walking aids showed no effect on the relative error. For multiple sclerosis patients with high walking impairment (EDSS Ambulation Score ≥6), the relative difference was significant (n=30; 24.0%; p<0.050). The results show that it is possible to create a transparently working ML prototype for a given medical use case while meeting certain software qualities.

摘要

步行的临床监测会产生大量包含极其有价值信息的数据。因此,机器学习(ML)已迅速进入研究领域,用于分析大型异构数据集并进行预测。这种基于数据驱动的ML应用在各个领域变得越来越适用,因此其软件质量受到关注。这项工作为应用先进的ML技术来预测2分钟步行测试的行走距离提供了概念验证,2分钟步行测试是一项重要的神经学测量,是步行耐力的指标。强调采用透明精简的方法,以可解释的方式优化结果,同时满足通用方法的特定软件要求。这是一种通用策略,作为分数因子设计基准,结合基于最小技术构建的标准化质量指标以及由此产生的优化软件原型。基于400个训练数据和100个验证数据,在优化配置的多次实验中,实现的预测产生了6.1%的相对误差。Adadelta算法(学习率=0.000814,模型扩展因子=5,模型深度=6,训练轮数=1000)表现为最佳模型,90%的预测绝对误差<15米。性别、年龄、疾病持续时间或使用助行器等因素对相对误差没有影响。对于步行障碍严重的多发性硬化症患者(扩展残疾状态量表行走评分≥6),相对差异显著(n=30;24.0%;p<0.050)。结果表明,在满足某些软件质量的同时,有可能为给定的医疗用例创建一个透明运行的ML原型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验