Suppr超能文献

基于个性化模板的多发性硬化症惯性测量单元信号步数检测

Personalized Template-Based Step Detection From Inertial Measurement Units Signals in Multiple Sclerosis.

作者信息

Vienne-Jumeau Aliénor, Oudre Laurent, Moreau Albane, Quijoux Flavien, Edmond Sébastien, Dandrieux Mélanie, Legendre Eva, Vidal Pierre Paul, Ricard Damien

机构信息

COGNAC-G (UMR 8257), CNRS Service de Santé des Armées, University Paris Descartes, Paris, France.

L2TI, University Paris 13, Villetaneuse, France.

出版信息

Front Neurol. 2020 Apr 21;11:261. doi: 10.3389/fneur.2020.00261. eCollection 2020.

Abstract

Objective gait assessment is key for the follow-up of patients with progressive multiple sclerosis (pMS). Inertial measurement units (IMUs) provide reliable and yet easy quantitative gait assessment in routine clinical settings. However, to the best of our knowledge, no automated step-detection algorithm performs well in detecting severely altered pMS gait. This article elaborates on a step-detection method based on personalized templates tested against a gold standard. Twenty-two individuals with pMS and 10 young healthy subjects (HSs) were instructed to walk on an electronic walkway wearing synchronized IMUs. Templates were derived from the IMU signals by using Initial and Final Contact times given by the walkway. These were used to detect steps from other gait trials of the same individual (intra-individual template-based detection, IITD) or another participant from the same group (pMS or HS) (intra-group template-based detection, IGTD). All participants were seen twice with a 6-month interval, with two measurements performed at each visit. Performance and accuracy metrics were computed, along with a similarity index (SId), which was computed as the mean distance between detected steps and their respective closest template. For HS participants, both the IITD and the IGTD algorithms had precision and recall of 1.00 for detecting steps. For pMS participants, precision and recall ranged from 0.94 to 1.00 for IITD and 0.85 to 0.95 for IGTD depending on the level of disability. The SId was correlated with performance and the accuracy of the result. An SId threshold of 0.957 (IITD) and 0.963 (IGTD) could rule out decreased performance (F-measure ≤ 0.95), with negative predictive values of 0.99 and 0.96 with the IITD and IGTD algorithms. Also, the SId computed with the IITD and IGTD algorithms could distinguish individuals showing changes at 6-month follow-up. This personalized step-detection method has high performance for detecting steps in pMS individuals with severely altered gait. The algorithm can be self-evaluating with the SI, which gives a measure of the confidence the clinician can have in the detection. What is more, the SId can be used as a biomarker of change in disease severity occurring between the two measurement times.

摘要

客观步态评估是进行性多发性硬化症(pMS)患者随访的关键。惯性测量单元(IMU)在常规临床环境中提供可靠且简便的定量步态评估。然而,据我们所知,没有一种自动步幅检测算法在检测严重改变的pMS步态方面表现良好。本文详细阐述了一种基于个性化模板并对照金标准进行测试的步幅检测方法。22名pMS患者和10名年轻健康受试者(HS)被要求穿着同步的IMU在电子步道上行走。通过使用步道给出的初始和最终接触时间,从IMU信号中导出模板。这些模板被用于从同一个体的其他步态试验中检测步幅(基于个体内模板的检测,IITD),或从同一组的另一名参与者(pMS或HS)中检测步幅(基于组内模板的检测,IGTD)。所有参与者每隔6个月接受两次检查,每次检查进行两次测量。计算了性能和准确性指标,以及一个相似性指数(SId),该指数计算为检测到的步幅与其各自最接近模板之间的平均距离。对于HS参与者,IITD和IGTD算法在检测步幅方面的精确率和召回率均为1.00。对于pMS参与者,根据残疾程度,IITD的精确率和召回率范围为0.94至1.00,IGTD为0.85至0.95。SId与性能和结果的准确性相关。IITD的SId阈值为0.957,IGTD为0.963,可以排除性能下降(F值≤0.95),IITD和IGTD算法的阴性预测值分别为0.99和0.96。此外,用IITD和IGTD算法计算的SId可以区分在6个月随访中出现变化的个体。这种个性化步幅检测方法在检测步态严重改变的pMS个体的步幅方面具有高性能。该算法可以通过SId进行自我评估,SId给出了临床医生对检测结果可信赖程度的一种衡量。此外,SId可以用作两次测量时间之间疾病严重程度变化的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f99/7186475/0397fb60cd89/fneur-11-00261-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验