Suppr超能文献

使用萤火虫算法(FA)和随机森林(RF)混合机器学习方法预测水泥-粉煤灰-矿渣三元混凝土的抗压强度

Predicting the Compressive Strength of the Cement-Fly Ash-Slag Ternary Concrete Using the Firefly Algorithm (FA) and Random Forest (RF) Hybrid Machine-Learning Method.

作者信息

Huang Jiandong, Sabri Mohanad Muayad Sabri, Ulrikh Dmitrii Vladimirovich, Ahmad Mahmood, Alsaffar Kifayah Abood Mohammed

机构信息

School of Mines, China University of Mining and Technology, Xuzhou 221116, China.

Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.

出版信息

Materials (Basel). 2022 Jun 13;15(12):4193. doi: 10.3390/ma15124193.

Abstract

Concrete is the most widely used material in construction. It has the characteristics of strong plasticity, good economy, high safety, and good durability. As a kind of structural material, concrete must have sufficient strength to resist various loads. At the same time, due to the brittleness of concrete, compressive strength is the most important mechanical property of concrete. To solve the disadvantages of the low efficiency of the traditional concrete compressive strength prediction methods, this study proposes a firefly algorithm (FA) and random forest (RF) hybrid machine-learning method to predict the compressive strength of concrete. First, a database is built based on the data of published articles. The dataset in the database contains eight input variables (cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and age) and one output variable (concrete compressive strength). Then, the correlation of the eight input variables was analyzed, and the results showed that there was no high correlation between the input variables; thus, they could be used as input variables to predict the compressive strength of concrete. Next, this study used the FA algorithm to optimize the hyperparameters of RF to obtain better hyperparameters. Finally, we verified that the FA and RF hybrid machine-learning model proposed in this study can predict the compressive strength of concrete with high accuracy by analyzing the R values and RSME values of the training set and test set and comparing the predicted value and actual value of the training set and test machine.

摘要

混凝土是建筑中使用最广泛的材料。它具有可塑性强、经济性好、安全性高和耐久性好的特点。作为一种结构材料,混凝土必须具有足够的强度来抵抗各种荷载。同时,由于混凝土的脆性,抗压强度是混凝土最重要的力学性能。为了解决传统混凝土抗压强度预测方法效率低的缺点,本研究提出了一种萤火虫算法(FA)和随机森林(RF)混合机器学习方法来预测混凝土的抗压强度。首先,基于已发表文章的数据建立一个数据库。数据库中的数据集包含八个输入变量(水泥、高炉矿渣、粉煤灰、水、高效减水剂、粗骨料、细骨料和龄期)和一个输出变量(混凝土抗压强度)。然后,分析了八个输入变量之间的相关性,结果表明输入变量之间不存在高度相关性;因此,它们可以用作预测混凝土抗压强度的输入变量。接下来,本研究使用FA算法优化RF的超参数以获得更好的超参数。最后,通过分析训练集和测试集的R值和RSME值,并比较训练集和测试机的预测值与实际值,验证了本研究提出的FA和RF混合机器学习模型能够高精度地预测混凝土的抗压强度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0466/9229672/75a61eeda607/materials-15-04193-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验