Suppr超能文献

基于人工智能方法的再生骨料可持续混凝土劈裂抗拉强度预测

Split Tensile Strength Prediction of Recycled Aggregate-Based Sustainable Concrete Using Artificial Intelligence Methods.

作者信息

Amin Muhammad Nasir, Ahmad Ayaz, Khan Kaffayatullah, Ahmad Waqas, Nazar Sohaib, Faraz Muhammad Iftikhar, Alabdullah Anas Abdulalim

机构信息

Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, P.O. Box 380, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia.

MaREI Centre, Ryan Institute and School of Engineering, College of Science and Engineering, National University of Ireland Galway, H91 TK33 Galway, Ireland.

出版信息

Materials (Basel). 2022 Jun 17;15(12):4296. doi: 10.3390/ma15124296.

Abstract

Sustainable concrete is gaining in popularity as a result of research into waste materials, such as recycled aggregate (RA). This strategy not only protects the environment, but also meets the demand for concrete materials. Using advanced artificial intelligence (AI) approaches, this study anticipates the split tensile strength (STS) of concrete samples incorporating RA. Three machine-learning techniques, artificial neural network (ANN), decision tree (DT), and random forest (RF), were examined for the specified database. The results suggest that the RF model shows high precision compared with the DT and ANN models at predicting the STS of RA-based concrete. The high value of the coefficient of determination and the low error values of the mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) provided significant evidence for the accuracy and precision of the RF model. Furthermore, statistical tests and the k-fold cross-validation technique were used to validate the models. The importance of the input parameters and their contribution levels was also investigated using sensitivity analysis and SHAP analysis.

摘要

由于对再生骨料(RA)等废料的研究,可持续混凝土越来越受欢迎。这种策略不仅保护环境,还满足了对混凝土材料的需求。本研究采用先进的人工智能(AI)方法,预测了掺加RA的混凝土样品的劈裂抗拉强度(STS)。针对指定数据库,研究了三种机器学习技术,即人工神经网络(ANN)、决策树(DT)和随机森林(RF)。结果表明,在预测基于RA的混凝土的STS时,与DT和ANN模型相比,RF模型具有更高的精度。决定系数的高值以及平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE)的低值为RF模型的准确性和精确性提供了重要证据。此外,还使用统计检验和k折交叉验证技术对模型进行了验证。还使用敏感性分析和SHAP分析研究了输入参数的重要性及其贡献水平。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验