Amlashi Amir Tavana, Ghanizadeh Ali Reza, Firouzranjbar Shadi, Moghaddam Hossein Moradi, Navazani Mohsen, Isleem Haytham F, Dessouky Samer, Khishe Mohammad
School of Civil and Environmental Engineering and Construction Management, University of Texas at San Antonio, San Antonio, USA.
Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran.
Sci Rep. 2025 Mar 5;15(1):7686. doi: 10.1038/s41598-025-92253-9.
Heavy metal contamination in wastewater poses severe environmental challenges, highlighting the urgent need for efficient and cost-effective solutions. While bentonite incorporation in concrete mixtures has shown promise in adsorbing heavy metals, its experimental validation-through Bentonite Plastic Concrete (BPC)-is hindered by high costs, labor-intensive procedures, and the need for specialized equipment. This study overcomes these barriers by introducing hybrid ensemble learning models, optimized with Forensic-Based Investigation Optimization (FBIO), to predict BPC's workability and mechanical properties, including slump (S), tensile strength (TS), and elastic modulus (E). Using input parameters such as gravel, bentonite, silty clay, curing time, sand, cement, and water, models including Random Forest (RF), Adaptive Boosting (ADB), Extreme Gradient Boosting (XGB), and Gradient Boosting Regression Tree (GBRT) were developed. Notably, GBRT-FBIO achieved the highest accuracy for E predictions, while XGB-FBIO excelled for TS and S. Shapley Additive Explanation (SHAP) analysis identified water as the most critical factor influencing slump (+ 0.11) predictions while curing time emerged as the key determinant for TS (+ 0.18) and E (+ 0.12) predictions. Additionally, a user-friendly online tool was developed to enable the real-time application of these models, reducing reliance on costly experimental methods. This work addresses key challenges in experimental BPC testing, offering a transformative computational approach for advancing civil engineering materials research.
废水中的重金属污染带来了严峻的环境挑战,凸显了对高效且经济高效解决方案的迫切需求。虽然在混凝土混合物中掺入膨润土在吸附重金属方面显示出了前景,但其通过膨润土塑性混凝土(BPC)进行的实验验证受到高成本、劳动密集型程序以及对专业设备需求的阻碍。本研究通过引入经基于法医调查优化(FBIO)优化的混合集成学习模型,来预测BPC的工作性能和力学性能,包括坍落度(S)、抗拉强度(TS)和弹性模量(E),从而克服了这些障碍。利用砾石、膨润土、粉质粘土、养护时间、沙子、水泥和水等输入参数,开发了包括随机森林(RF)、自适应提升(ADB)、极端梯度提升(XGB)和梯度提升回归树(GBRT)在内的模型。值得注意的是,GBRT - FBIO在E预测方面取得了最高精度,而XGB - FBIO在TS和S预测方面表现出色。夏普利加法解释(SHAP)分析确定水是影响坍落度(+0.11)预测的最关键因素,而养护时间是TS(+0.18)和E(+0.12)预测的关键决定因素。此外,还开发了一个用户友好的在线工具,以实现这些模型的实时应用,减少对昂贵实验方法的依赖。这项工作解决了BPC实验测试中的关键挑战,为推进土木工程材料研究提供了一种变革性的计算方法。