Suppr超能文献

基于太赫兹辐射与超材料技术的微流控芯片灵敏度增强及益生菌检测

Sensitivity Enhancement and Probiotic Detection of Microfluidic Chips Based on Terahertz Radiation Combined with Metamaterial Technology.

作者信息

Lin Yen-Shuo, Huang Shih-Ting, Hsu Shen-Fu Steve, Tang Kai-Yuan, Yen Ta-Jen, Yao Da-Jeng

机构信息

Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu 30013, Taiwan.

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.

出版信息

Micromachines (Basel). 2022 Jun 7;13(6):904. doi: 10.3390/mi13060904.

Abstract

Terahertz (THz) radiation has attracted wide attention in recent years due to its non-destructive properties and ability to sense molecular structures. In applications combining terahertz radiation with metamaterial technology, the interaction between the terahertz radiation and the metamaterials causes resonance reactions; different analytes have different resonance performances in the frequency domain. In addition, a microfluidic system is able to provide low volume reagents for detection, reduce noise from the environment, and concentrate the sample on the detection area. Through simulation, a cruciform metamaterial pattern was designed; the proportion, periodicity, and width of the metamaterial were adjusted to improve the sensing capability of the chip. In the experiments, the sensing capabilities of Type A, B, and C chips were compared. The Type C chip had the most significant resonant effect; its maximum shift could be increased to 89 GHz. In the probiotic experiment, the cruciform chip could have a 0.72 GHz shift at a concentration of 0.025 mg/50 μL, confirming that terahertz radiation combined with a metamaterial microfluidic chip can perform low-concentration detection.

摘要

近年来,太赫兹(THz)辐射因其无损特性和感知分子结构的能力而备受广泛关注。在将太赫兹辐射与超材料技术相结合的应用中,太赫兹辐射与超材料之间的相互作用会引发共振反应;不同的分析物在频域中具有不同的共振表现。此外,微流控系统能够为检测提供少量试剂,减少环境噪声,并将样品集中在检测区域。通过模拟,设计了一种十字形超材料图案;调整了超材料的比例、周期性和宽度,以提高芯片的传感能力。在实验中,比较了A型、B型和C型芯片的传感能力。C型芯片具有最显著的共振效应;其最大频移可增加到89 GHz。在益生菌实验中,十字形芯片在浓度为0.025 mg/50 μL时可产生0.72 GHz的频移,证实太赫兹辐射与超材料微流控芯片相结合可进行低浓度检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad7/9228199/ae540949fc19/micromachines-13-00904-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验