Ouattara Amed, Dwivedi Ankit, Adams Matthew, Niangaly Amadou, Laurens Matthew B, Nyunt Myaing M, Plowe Christopher V, Djimde Abdoulaye, Takala-Harrison Shannon, Silva Joana C
Malaria Research Program, Center for Vaccine Development and Global Heath, School of Medicine, University of Maryland School of Medicine, 685 West Baltimore St., Baltimore, MD 21201, USA.
Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako P.O. Box 1805, Mali.
Microorganisms. 2022 May 25;10(6):1090. doi: 10.3390/microorganisms10061090.
Failure to account for genetic diversity of antigens during vaccine design may lead to vaccine escape. To evaluate the vaccine escape potential of antigens used in vaccines currently in development or clinical testing, we surveyed the genetic diversity, measured population differentiation, and performed in silico prediction and analysis of T-cell epitopes of ten such pre-erythrocytic-stage antigens using whole-genome sequence data from 1010 field isolates. Of these, 699 were collected in Africa (Burkina Faso, Cameroon, Guinea, Kenya, Malawi, Mali, and Tanzania), 69 in South America (Brazil, Colombia, French Guiana, and Peru), 59 in Oceania (Papua New Guinea), and 183 in Asia (Cambodia, Myanmar, and Thailand). Antigens surveyed include cell-traversal protein for ookinetes and sporozoites, circumsporozoite protein, liver-stage antigens 1 and 3, sporozoite surface proteins P36 and P52, sporozoite asparagine-rich protein-1, sporozoite microneme protein essential for cell traversal-2, and upregulated-in-infectious-sporozoite 3 and 4 proteins. The analyses showed that a limited number of these protein variants, when combined, would be representative of worldwide parasite populations. Moreover, predicted T-cell epitopes were identified that could be further explored for immunogenicity and protective efficacy. Findings can inform the rational design of a multivalent malaria vaccine.
在疫苗设计过程中未能考虑抗原的遗传多样性可能会导致疫苗逃逸。为了评估目前正在研发或处于临床试验阶段的疫苗中所使用抗原的疫苗逃逸潜力,我们利用来自1010个野外分离株的全基因组序列数据,调查了10种此类红细胞前期抗原的遗传多样性,测量了群体分化,并对其T细胞表位进行了计算机预测和分析。其中,699个分离株采集于非洲(布基纳法索、喀麦隆、几内亚、肯尼亚、马拉维、马里和坦桑尼亚),69个来自南美洲(巴西、哥伦比亚、法属圭亚那和秘鲁),59个来自大洋洲(巴布亚新几内亚),183个来自亚洲(柬埔寨、缅甸和泰国)。所调查的抗原包括动合子和子孢子的细胞穿越蛋白、环子孢子蛋白、肝期抗原1和3、子孢子表面蛋白P36和P52、富含天冬酰胺的子孢子蛋白-1、细胞穿越所必需的子孢子微小膜体蛋白-2,以及感染性子孢子上调蛋白3和4。分析表明,将这些蛋白变体中的有限数量组合起来,将能够代表全球寄生虫群体。此外,还鉴定出了预测的T细胞表位,可进一步探索其免疫原性和保护效力。这些发现可为多价疟疾疫苗的合理设计提供参考。