Fu Huiting, Peng Zhengxing, Fan Qunping, Lin Francis R, Qi Feng, Ran Yixin, Wu Ziang, Fan Baobing, Jiang Kui, Woo Han Young, Lu Guanghao, Ade Harald, Jen Alex K-Y
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Adv Mater. 2022 Aug;34(33):e2202608. doi: 10.1002/adma.202202608. Epub 2022 Jul 15.
A major challenge hindering the further development of all-polymer solar cells (all-PSCs) employing polymerized small-molecule acceptors is the relatively low fill factor (FF) due to the difficulty in controlling the active-layer morphology. The issues typically arise from oversized phase separation resulting from the thermodynamically unfavorable mixing between two macromolecular species, and disordered molecular orientation/packing of highly anisotropic polymer chains. Herein, a facile top-down controlling strategy to engineer the morphology of all-polymer blends is developed by leveraging the layer-by-layer (LBL) deposition. Optimal intermixing of polymer components can be achieved in the two-step process by tuning the bottom-layer polymer swelling during top-layer deposition. Consequently, both the molecular orientation/packing of the bottom layer and the molecular ordering of the top layer can be optimized with a suitable top-layer processing solvent. A favorable morphology with gradient vertical composition distribution for efficient charge transport and extraction is therefore realized, affording a high all-PSC efficiency of 17.0% with a FF of 76.1%. The derived devices also possess excellent long-term thermal stability and can retain >90% of their initial efficiencies after being annealed at 65 °C for 1300 h. These results validate the distinct advantages of employing an LBL processing protocol to fabricate high-performance all-PSCs.
阻碍采用聚合小分子受体的全聚合物太阳能电池(全聚合物太阳能电池)进一步发展的一个主要挑战是,由于难以控制活性层的形态,填充因子(FF)相对较低。这些问题通常源于两种大分子物种之间热力学上不利的混合导致的过大相分离,以及高度各向异性聚合物链的无序分子取向/堆积。在此,通过利用逐层(LBL)沉积,开发了一种简便的自上而下的控制策略来设计全聚合物共混物的形态。在两步过程中,通过在顶层沉积过程中调节底层聚合物的溶胀,可以实现聚合物组分的最佳混合。因此,使用合适的顶层加工溶剂可以优化底层的分子取向/堆积以及顶层的分子有序性。从而实现了具有梯度垂直组成分布的有利形态,有利于电荷传输和提取,全聚合物太阳能电池的效率高达17.0%,填充因子为76.1%。所制备的器件还具有优异的长期热稳定性,在65℃下退火1300小时后,仍能保持其初始效率的90%以上。这些结果验证了采用LBL加工工艺制备高性能全聚合物太阳能电池的显著优势。