Suppr超能文献

矿物质在人类牙釉质裂纹自我修复中的作用。

Role of the Mineral in the Self-Healing of Cracks in Human Enamel.

作者信息

Lew Andrew J, Beniash Elia, Gilbert Pupa U P A, Buehler Markus J

机构信息

Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

出版信息

ACS Nano. 2022 Jul 26;16(7):10273-10280. doi: 10.1021/acsnano.1c10407. Epub 2022 Jun 24.

Abstract

Human enamel is an incredibly resilient biological material, withstanding repeated daily stresses for decades. The mechanisms behind this resilience remain an open question, with recent studies demonstrating a crack-deflection mechanism contributing to enamel toughness and other studies detailing the roles of the organic matrix and remineralization. Here, we focus on the mineral and hypothesize that self-healing of cracks in enamel nanocrystals may be an additional mechanism acting to prevent catastrophic failure. To test this hypothesis, we used a molecular dynamics (MD) approach to compare the fracture behavior of hydroxyapatite (HAP) and calcite, the main minerals in human enamel and sea urchin teeth, respectively. We find that cracks heal under pressures typical of mastication by fusion of crystals in HAP but not in calcite, which is consistent with the resilience of HAP enamel that calcite teeth lack. Scanning transmission electron microscopy (STEM) images of structurally intact ("sound") human enamel show dashed-line nanocracks that resemble and therefore might be the cracks healed by fusion of crystals produced . The fast, self-healing mechanism shown here is common in soft materials and ceramics but has not been observed in single crystalline materials at room temperature. The crack self-healing in sound enamel nanocrystals, therefore, is unique in the human body and unique in materials science, with potential applications in designing bioinspired materials.

摘要

人类牙釉质是一种极具韧性的生物材料,能够承受数十年的日常反复压力。这种韧性背后的机制仍然是一个悬而未决的问题,最近的研究表明,裂纹偏转机制有助于牙釉质的韧性,而其他研究则详细阐述了有机基质和再矿化的作用。在这里,我们聚焦于矿物质,并假设牙釉质纳米晶体中裂纹的自我修复可能是防止灾难性破坏的另一种机制。为了验证这一假设,我们采用分子动力学(MD)方法,分别比较了人牙釉质和海胆牙齿中的主要矿物质——羟基磷灰石(HAP)和方解石的断裂行为。我们发现,在咀嚼的典型压力下,HAP中的晶体融合可使裂纹愈合,而方解石则不然,这与方解石牙齿所缺乏的HAP牙釉质的韧性一致。结构完整(“完好”)的人牙釉质的扫描透射电子显微镜(STEM)图像显示出虚线状的纳米裂纹,这些裂纹与之相似,因此可能是由晶体融合产生的已愈合裂纹。此处所示的快速自我修复机制在软材料和陶瓷中很常见,但在室温下的单晶材料中尚未观察到。因此,完好牙釉质纳米晶体中的裂纹自我修复在人体中是独特的,在材料科学中也是独特的,在设计仿生材料方面具有潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验