Johnson Steven L
Institute for Quantum Electronics, ETH Zürich, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland.
SwissFEL, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland.
Faraday Discuss. 2022 Sep 15;237(0):9-26. doi: 10.1039/d2fd00098a.
Advances over the past decade have presented new avenues to achieve control over material properties using intense pulses of electromagnetic radiation, with frequencies ranging from optical (approximately 1 PHz, or 10 Hz) down to below 1 THz (10 Hz). Some of these new developments have arisen from new experimental methods to drive and observe transient material properties, while others have emerged from new computational techniques that have made nonequilibrium dynamics more tractable to our understanding. One common issue with most attempts to realize control using electromagnetic pulses is the dissipation of energy, which in many cases poses a limit due to uncontrolled heating and has led to strong interest in using lower frequency and/or highly specific excitations to minimize this effect. Emergent developments in experimental tools using shaped X-ray pulses may in the future offer new possibilities for material control, provided that the issue of heat dissipation can be resolved for higher frequency light.
在过去十年中取得的进展为利用电磁辐射的强脉冲来控制材料特性提供了新途径,其频率范围从光学频率(约1拍赫兹,即10赫兹)到低于1太赫兹(10赫兹)。其中一些新进展源于驱动和观测瞬态材料特性的新实验方法,而其他进展则源于新的计算技术,这些技术使非平衡动力学更易于我们理解。大多数尝试使用电磁脉冲实现控制时的一个常见问题是能量耗散,在许多情况下,由于不受控制的加热,这构成了一个限制,并引发了人们对使用较低频率和/或高度特定激发来最小化这种影响的浓厚兴趣。如果能够解决高频光的散热问题,那么使用整形X射线脉冲的实验工具的新进展未来可能会为材料控制提供新的可能性。