Hervé Marius, Privault Gaël, Trzop Elzbieta, Akagi Shintaro, Watier Yves, Zerdane Serhane, Chaban Ievgeniia, Torres Ramírez Ricardo G, Mariette Celine, Volte Alix, Cammarata Marco, Levantino Matteo, Tokoro Hiroko, Ohkoshi Shin-Ichi, Collet Eric
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, 35000, Rennes, France.
CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL 2015, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
Nat Commun. 2024 Jan 24;15(1):267. doi: 10.1038/s41467-023-44440-3.
Ultrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the RbMnCo[Fe(CN)] material, designed to exhibit a 75 K wide thermal hysteresis around room temperature between MnFe tetragonal and MnFe cubic phases. We developed a specific powder sample streaming technique to monitor by ultrafast X-ray diffraction the structural and symmetry changes. We show that the photoinduced polarons expand the lattice, while the tetragonal-to-cubic photoinduced phase transition occurs within 100 ps above threshold fluence. These results are rationalized within the framework of the Landau theory of phase transition as an elastically-driven and cooperative process. We foresee broad applications of the streaming powder technique to study non-reversible and ultrafast dynamics.
室温下由单次激光脉冲驱动且在刺激后长时间持续的超快光致相变,代表了对材料特性进行超快控制的新兴途径。时间分辨研究为远离平衡的电子和结构动力学提供了基本的机理洞察。在此,我们研究了RbMnCo[Fe(CN)]材料的光致相变,该材料设计为在室温附近的MnFe四方相和MnFe立方相之间呈现75 K宽的热滞回线。我们开发了一种特定的粉末样品流动技术,通过超快X射线衍射监测结构和对称性变化。我们表明,光致极化子使晶格膨胀,而在高于阈值能量密度时,四方相向立方相的光致相变在100 ps内发生。这些结果在朗道相变理论的框架内被合理化,认为是一个弹性驱动的协同过程。我们预见流动粉末技术在研究不可逆和超快动力学方面有广泛应用。