Suppr超能文献

野生狨猴在捕食过程中的主动视觉。

Active vision during prey capture in wild marmoset monkeys.

机构信息

Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA.

Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, CA 92039, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92039, USA.

出版信息

Curr Biol. 2022 Aug 8;32(15):3423-3428.e3. doi: 10.1016/j.cub.2022.06.028. Epub 2022 Jun 23.

Abstract

A foundational pressure in the evolution of all animals is the ability to travel through the world, inherently coupling the sensory and motor systems. While this relationship has been explored in several species, it has been largely overlooked in primates, which have typically relied on paradigms in which head-restrained subjects view stimuli on screens. Natural visual behaviors, by contrast, are typified by locomotion through the environment guided by active sensing as animals explore and interact with the world, a relationship well illustrated by prey capture. Here, we characterized prey capture in wild marmoset monkeys as they negotiated their dynamic, arboreal habitat to illustrate the inherent role of vision as an active process in natural nonhuman primate behavior. Not only do marmosets share the core properties of vision that typify the primate Order, but they are prolific hunters that prey on a diverse set of prey animals. Marmosets pursued prey using vision in several different contexts, but executed precise visually guided motor control that predominantly involved grasping with hands for successful capture of prey. Applying markerless tracking for the first time in wild primates yielded novel findings that precisely quantified how marmosets track insects prior to initiating an attack and the rapid visually guided corrections of the hands during capture. These findings offer the first detailed insight into the active nature of vision to guide multiple facets of a natural goal-directed behavior in wild primates and can inform future laboratory studies of natural primate visual behaviors and the supporting neural processes.

摘要

所有动物进化的基础压力是在世界上旅行的能力,这固有地将感觉和运动系统结合在一起。虽然这种关系已经在几种物种中得到了探索,但在灵长类动物中却很大程度上被忽视了,因为它们通常依赖于在屏幕上观看刺激的头固定范式。相比之下,自然视觉行为的特点是通过环境中的运动来引导,这是由动物在探索和与世界互动时的主动感知来实现的,这一关系在猎物捕捉中得到了很好的说明。在这里,我们描述了野生狨猴在动态的、树栖的栖息地中捕捉猎物的行为,以说明视觉在自然非人类灵长类动物行为中作为一种主动过程的固有作用。狨猴不仅具有典型的灵长类动物的核心视觉特征,而且还是多产的猎手,以各种猎物动物为食。狨猴在几种不同的环境中使用视觉来追捕猎物,但执行的是精确的视觉引导的运动控制,主要涉及用手抓取以成功捕捉猎物。这是首次在野生灵长类动物中应用无标记跟踪,获得了新颖的发现,这些发现精确地量化了狨猴在发起攻击之前如何跟踪昆虫,以及在捕捉过程中对手的快速视觉引导校正。这些发现为主动的视觉提供了第一个详细的见解,以指导野生灵长类动物自然目标导向行为的多个方面,并为未来实验室对自然灵长类动物视觉行为及其支持的神经过程的研究提供信息。

相似文献

1
Active vision during prey capture in wild marmoset monkeys.
Curr Biol. 2022 Aug 8;32(15):3423-3428.e3. doi: 10.1016/j.cub.2022.06.028. Epub 2022 Jun 23.
2
Fast prediction in marmoset reach-to-grasp movements for dynamic prey.
Curr Biol. 2023 Jun 19;33(12):2557-2565.e4. doi: 10.1016/j.cub.2023.05.032. Epub 2023 Jun 5.
3
An ethologically motivated neurobiology of primate visually-guided reach-to-grasp behavior.
Curr Opin Neurobiol. 2024 Jun;86:102872. doi: 10.1016/j.conb.2024.102872. Epub 2024 Apr 1.
4
Prehensile kinematics of the marmoset monkey: Implications for the evolution of visually-guided behaviors.
J Comp Neurol. 2019 May 15;527(9):1495-1507. doi: 10.1002/cne.24639. Epub 2019 Feb 11.
6
Active vision in marmosets: a model system for visual neuroscience.
J Neurosci. 2014 Jan 22;34(4):1183-94. doi: 10.1523/JNEUROSCI.3899-13.2014.
8
Vision Drives Accurate Approach Behavior during Prey Capture in Laboratory Mice.
Curr Biol. 2016 Nov 21;26(22):3046-3052. doi: 10.1016/j.cub.2016.09.009. Epub 2016 Oct 20.
9
Detection of insect prey by wild common marmosets: The effect of color vision.
Am J Primatol. 2019 Mar;81(3):e22963. doi: 10.1002/ajp.22963. Epub 2019 Feb 26.
10
Hunting strategies in wild common marmosets are prey and age dependent.
Am J Primatol. 2010 Dec;72(12):1039-46. doi: 10.1002/ajp.20860.

引用本文的文献

1
Sex differences in visually guided orienting behavior emerges during adolescence in mice.
iScience. 2025 Jul 22;28(8):113145. doi: 10.1016/j.isci.2025.113145. eCollection 2025 Aug 15.
2
Computational Urban Ecology of New York City Rats.
bioRxiv. 2025 Jul 24:2025.07.21.665423. doi: 10.1101/2025.07.21.665423.
3
How a lack of haptic feedback affects eye-hand coordination and embodiment in virtual reality.
Sci Rep. 2025 Jul 12;15(1):25219. doi: 10.1038/s41598-025-10319-0.
4
Active vision in freely moving marmosets using head-mounted eye tracking.
Proc Natl Acad Sci U S A. 2025 Feb 11;122(6):e2412954122. doi: 10.1073/pnas.2412954122. Epub 2025 Feb 3.
5
PreyTouch: a touchscreen-based closed-loop system for studying predator-prey interactions.
Commun Biol. 2024 Dec 19;7(1):1650. doi: 10.1038/s42003-024-07345-5.
6
Unsupervised decomposition of natural monkey behavior into a sequence of motion motifs.
Commun Biol. 2024 Sep 3;7(1):1080. doi: 10.1038/s42003-024-06786-2.
7
Active vision in freely moving marmosets using head-mounted eye tracking.
bioRxiv. 2024 Nov 21:2024.05.11.593707. doi: 10.1101/2024.05.11.593707.
8
Dynamic modulation of social gaze by sex and familiarity in marmoset dyads.
bioRxiv. 2024 Nov 5:2024.02.16.580693. doi: 10.1101/2024.02.16.580693.
10
Motor System-Dependent Effects of Amygdala and Ventral Striatum Lesions on Explore-Exploit Behaviors.
J Neurosci. 2024 Jan 31;44(5):e1206232023. doi: 10.1523/JNEUROSCI.1206-23.2023.

本文引用的文献

2
Natural behavior is the language of the brain.
Curr Biol. 2022 May 23;32(10):R482-R493. doi: 10.1016/j.cub.2022.03.031.
3
Retinal optic flow during natural locomotion.
PLoS Comput Biol. 2022 Feb 22;18(2):e1009575. doi: 10.1371/journal.pcbi.1009575. eCollection 2022 Feb.
4
Foraging networks and social tolerance in a cooperatively breeding primate (Callithrix jacchus).
J Anim Ecol. 2022 Jan;91(1):138-153. doi: 10.1111/1365-2656.13609. Epub 2021 Oct 31.
5
Interspecies activation correlations reveal functional correspondences between marmoset and human brain areas.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2110980118.
6
Quantifying behavior to understand the brain.
Nat Neurosci. 2020 Dec;23(12):1537-1549. doi: 10.1038/s41593-020-00734-z. Epub 2020 Nov 9.
7
Dynamics of gaze control during prey capture in freely moving mice.
Elife. 2020 Jul 24;9:e57458. doi: 10.7554/eLife.57458.
8
Movement-Related Signals in Sensory Areas: Roles in Natural Behavior.
Trends Neurosci. 2020 Aug;43(8):581-595. doi: 10.1016/j.tins.2020.05.005. Epub 2020 Jun 22.
9
Studying the visual brain in its natural rhythm.
Neuroimage. 2020 Aug 1;216:116790. doi: 10.1016/j.neuroimage.2020.116790. Epub 2020 Apr 8.
10
Fast animal pose estimation using deep neural networks.
Nat Methods. 2019 Jan;16(1):117-125. doi: 10.1038/s41592-018-0234-5. Epub 2018 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验