Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, China.
Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
Radiother Oncol. 2022 Sep;174:8-15. doi: 10.1016/j.radonc.2022.06.010. Epub 2022 Jun 21.
To establish and validate a contrast-enhanced computed tomography-based hybrid radiomics nomogram for prediction of local recurrence-free survival (LRFS) in esophageal squamous cell cancer (ESCC) patients receiving definitive (chemo)radiotherapy in a multicenter setting.
This retrospective study included 302 ESCC patients from Xijing Hospital receiving definitive (chemo)radiotherapy, which were randomly assigned to the training (n = 201) and internal validation sets (n = 101). And 74 and 21 ESCC patients from the other two centers were used as the external validation set (n = 95). A hybrid radiomics nomogram was established by integrating clinical factors, radiomic signature and deep-learning signature in training set and was tested in two validation sets.
The deep-learning signature showed better prognostic performance than radiomic signature for predicting LRFS in training (C-index: 0.73 vs 0.70), internal (Cindex: 0.72 vs 0.64) and external validation sets (C-index: 0.72 vs 0.63), which could stratify patients into high and low-risk group with different prognosis (cut-off value: -0.06). Low-risk groups had better LRFS than high-risk groups in training (p < 0.0001; 2-y LRFS 71.1% vs 33.0%), internal (p < 0.01; 2-y LRFS 58.8% vs 34.8%) and external validation sets (p < 0.0001; 2-y LRFS 61.9% vs 22.4%), respectively. The hybrid radiomics nomogram established by integrating radiomic signature, deep-learning signature with clinical factors including T stage and concurrent chemotherapy outperformed any one or two combinations in training (C-index: 0.82), internal (Cindex: 0.78), and external validation sets (C-index: 0.76). Calibration curves showed good agreement.
The hybrid radiomics based on pretreatment contrast-enhanced computed tomography provided a promising way to predict local recurrence of ESCC patients receiving definitive (chemo)radiotherapy.
本研究旨在建立并验证一种基于增强 CT 的混合放射组学列线图,以预测接受根治性放化疗的食管鳞癌(ESCC)患者的局部无复发生存率(LRFS)。该列线图基于多中心数据。
本回顾性研究纳入了来自西京医院的 302 例接受根治性放化疗的 ESCC 患者,将其随机分配至训练集(n=201)和内部验证集(n=101)。另外,还有来自其他两个中心的 74 例和 21 例 ESCC 患者分别作为外部验证集(n=95)。在训练集中,通过整合临床因素、放射组学特征和深度学习特征,建立了混合放射组学列线图,并在两个验证集中进行了验证。
在训练集(C 指数:0.73 比 0.70)、内部验证集(C 指数:0.72 比 0.64)和外部验证集(C 指数:0.72 比 0.63)中,深度学习特征在预测 LRFS 方面的预后性能均优于放射组学特征,可将患者分为高风险和低风险组,且两组间的预后存在显著差异(截断值:-0.06)。在训练集(p<0.0001;2 年 LRFS 71.1%比 33.0%)、内部验证集(p<0.01;2 年 LRFS 58.8%比 34.8%)和外部验证集(p<0.0001;2 年 LRFS 61.9%比 22.4%)中,低风险组的 LRFS 均优于高风险组。基于放射组学特征、深度学习特征和 T 分期、同期化疗等临床因素建立的混合放射组学列线图,在训练集(C 指数:0.82)、内部验证集(C 指数:0.78)和外部验证集(C 指数:0.76)中的表现均优于任何单一或两种特征的组合。校准曲线显示了良好的一致性。
基于治疗前增强 CT 的混合放射组学模型为预测接受根治性放化疗的 ESCC 患者的局部复发提供了一种有前景的方法。