Suppr超能文献

基于 CT 的放射组学列线图可预测接受根治性放化疗或单纯放疗的食管癌患者的局部无复发生存:一项多中心研究。

CT-based radiomics nomogram may predict local recurrence-free survival in esophageal cancer patients receiving definitive chemoradiation or radiotherapy: A multicenter study.

机构信息

Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi'an, China.

Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.

出版信息

Radiother Oncol. 2022 Sep;174:8-15. doi: 10.1016/j.radonc.2022.06.010. Epub 2022 Jun 21.

Abstract

BACKGROUND AND PURPOSE

To establish and validate a contrast-enhanced computed tomography-based hybrid radiomics nomogram for prediction of local recurrence-free survival (LRFS) in esophageal squamous cell cancer (ESCC) patients receiving definitive (chemo)radiotherapy in a multicenter setting.

MATERIALS AND METHODS

This retrospective study included 302 ESCC patients from Xijing Hospital receiving definitive (chemo)radiotherapy, which were randomly assigned to the training (n = 201) and internal validation sets (n = 101). And 74 and 21 ESCC patients from the other two centers were used as the external validation set (n = 95). A hybrid radiomics nomogram was established by integrating clinical factors, radiomic signature and deep-learning signature in training set and was tested in two validation sets.

RESULTS

The deep-learning signature showed better prognostic performance than radiomic signature for predicting LRFS in training (C-index: 0.73 vs 0.70), internal (Cindex: 0.72 vs 0.64) and external validation sets (C-index: 0.72 vs 0.63), which could stratify patients into high and low-risk group with different prognosis (cut-off value: -0.06). Low-risk groups had better LRFS than high-risk groups in training (p < 0.0001; 2-y LRFS 71.1% vs 33.0%), internal (p < 0.01; 2-y LRFS 58.8% vs 34.8%) and external validation sets (p < 0.0001; 2-y LRFS 61.9% vs 22.4%), respectively. The hybrid radiomics nomogram established by integrating radiomic signature, deep-learning signature with clinical factors including T stage and concurrent chemotherapy outperformed any one or two combinations in training (C-index: 0.82), internal (Cindex: 0.78), and external validation sets (C-index: 0.76). Calibration curves showed good agreement.

CONCLUSIONS

The hybrid radiomics based on pretreatment contrast-enhanced computed tomography provided a promising way to predict local recurrence of ESCC patients receiving definitive (chemo)radiotherapy.

摘要

背景与目的

本研究旨在建立并验证一种基于增强 CT 的混合放射组学列线图,以预测接受根治性放化疗的食管鳞癌(ESCC)患者的局部无复发生存率(LRFS)。该列线图基于多中心数据。

材料与方法

本回顾性研究纳入了来自西京医院的 302 例接受根治性放化疗的 ESCC 患者,将其随机分配至训练集(n=201)和内部验证集(n=101)。另外,还有来自其他两个中心的 74 例和 21 例 ESCC 患者分别作为外部验证集(n=95)。在训练集中,通过整合临床因素、放射组学特征和深度学习特征,建立了混合放射组学列线图,并在两个验证集中进行了验证。

结果

在训练集(C 指数:0.73 比 0.70)、内部验证集(C 指数:0.72 比 0.64)和外部验证集(C 指数:0.72 比 0.63)中,深度学习特征在预测 LRFS 方面的预后性能均优于放射组学特征,可将患者分为高风险和低风险组,且两组间的预后存在显著差异(截断值:-0.06)。在训练集(p<0.0001;2 年 LRFS 71.1%比 33.0%)、内部验证集(p<0.01;2 年 LRFS 58.8%比 34.8%)和外部验证集(p<0.0001;2 年 LRFS 61.9%比 22.4%)中,低风险组的 LRFS 均优于高风险组。基于放射组学特征、深度学习特征和 T 分期、同期化疗等临床因素建立的混合放射组学列线图,在训练集(C 指数:0.82)、内部验证集(C 指数:0.78)和外部验证集(C 指数:0.76)中的表现均优于任何单一或两种特征的组合。校准曲线显示了良好的一致性。

结论

基于治疗前增强 CT 的混合放射组学模型为预测接受根治性放化疗的 ESCC 患者的局部复发提供了一种有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验