Suppr超能文献

优化芬顿样反应条件,在中性 pH 下实现环丙沙星的高效降解:响应面法-CCD 与人工神经网络-遗传算法的比较。

Optimizing Fenton-like process, homogeneous at neutral pH for ciprofloxacin degradation: Comparing RSM-CCD and ANN-GA.

机构信息

Department of Civil Engineering, Sirjan University of Technology, Sirjan, Iran.

Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman.

出版信息

J Environ Manage. 2022 Sep 1;317:115469. doi: 10.1016/j.jenvman.2022.115469. Epub 2022 Jun 8.

Abstract

Antibiotics are considered among the most non-biodegradable environmental contaminants due to their genetic resistance. Considering the importance of antibiotics removal, this study was aimed at multi-objective modeling and optimization of the Fenton-like process, homogeneous at initial circumneutral pH. Two main issues, including maximizing Ciprofloxacin (CIP) removal and minimizing sludge to iron ratio (SIR), were modeled by comparing central composite design (CCD) based on Response Surface Methodology (RSM) and hybrid Artificial Neural Network-Genetic Algorithm (ANN-GA). Results of simultaneous optimization using ethylene diamine tetraacetic acid (EDTA) revealed that at pH ≅ 7, optimal conditions for initial CIP concentration, Fe concentration, [HO]/[Fe] molar ratio, initial EDTA concentration, and reaction time were 14.9 mg/L, 9.2 mM, 3.2, 0.6 mM, and 25 min, respectively. Under these optimal conditions, CIP removal and SIR were predicted at 85.2% and 2.24 (gr/M). In the next step, multilayer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANN) were developed to model CIP and SIR. It was concluded that ANN, especially multilayer perceptron (MLP-ANN) has a decent performance in predicting response values. Additionally, multi-objective optimization of the process was performed using Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to maximize CIP removal efficiencies while minimizing SIR. NSGA-II optimization algorithm showed a reliable performance in the interaction between conflicting goals and yielded a better result than the GA algorithm. Finally, TOPSIS method with equal weights of the criteria was applied to choose the best alternative on the Pareto optimal solutions of the NSGA-II. Comparing the optimal values obtained by the multi-objective response surface optimization models (RSM-CCD) with the NSGA-II algorithm showed that the optimal variables in both models were close and, according to the absolute relative error criterion, possessed almost the same performance in the prediction of variables.

摘要

抗生素因其遗传抗性而被认为是最不易生物降解的环境污染物之一。鉴于去除抗生素的重要性,本研究旨在对初始近中性 pH 值下的类芬顿工艺进行多目标建模和优化。通过比较基于响应面法(RSM)的中心复合设计(CCD)和混合人工神经网络-遗传算法(ANN-GA),对包括最大程度去除环丙沙星(CIP)和最小化污泥铁比(SIR)在内的两个主要问题进行建模。使用乙二胺四乙酸(EDTA)进行同步优化的结果表明,在 pH ≅ 7 时,初始 CIP 浓度、Fe 浓度、[HO]/[Fe]摩尔比、初始 EDTA 浓度和反应时间的最佳条件分别为 14.9 mg/L、9.2 mM、3.2、0.6 mM 和 25 min。在这些最佳条件下,CIP 去除率和 SIR 分别预测为 85.2%和 2.24(gr/M)。在下一步中,开发了多层感知器(MLP)和径向基函数(RBF)人工神经网络(ANN)来模拟 CIP 和 SIR。结果表明,ANN,特别是多层感知器(MLP-ANN)在预测响应值方面具有良好的性能。此外,使用遗传算法(GA)和非支配排序遗传算法-II(NSGA-II)对该过程进行多目标优化,以在最大程度提高 CIP 去除效率的同时最小化 SIR。NSGA-II 优化算法在冲突目标之间的交互中表现出可靠的性能,并产生了比 GA 算法更好的结果。最后,应用具有同等权重标准的 TOPSIS 方法从 NSGA-II 的帕累托最优解中选择最佳替代方案。将多目标响应面优化模型(RSM-CCD)获得的最优值与 NSGA-II 算法进行比较表明,两种模型的最优变量接近,根据绝对相对误差标准,在变量预测方面具有几乎相同的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验