Suppr超能文献

基于人工智能 (AI) 方法的陆基水产养殖废水电絮凝/混凝回收的建模与优化。

Modelling and optimisation of electrocoagulation/flocculation recovery of effluent from land-based aquaculture by artificial intelligence (AI) approaches.

机构信息

Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria.

Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.

出版信息

Environ Sci Pollut Res Int. 2023 Jun;30(27):70897-70917. doi: 10.1007/s11356-023-27387-2. Epub 2023 May 9.

Abstract

This study examined the modelling and optimisation of the electrocoagulation-flocculation (ECF) recovery of aquaculture effluent (AQE) using aluminium electrodes. The response surface methodology (RSM), artificial neural network (ANN), and adaptive neuro-fuzzy inference system (ANFIS) were used for the modelling, while the optimisation tools were the numerical RSM and genetic algorithm (GA). Furthermore, the kinetics of the ECF process was studied to provide insight into the mechanism governing the ECF of AQE. The experimental design was performed using the central composite design (CCD) of the RSM. The ANFIS modelling was accomplished via the Grid Partition (GP) of the data set, while the ANN used the multi-layer perceptron (MLP) based feed-forward system. Statistically, the prediction accuracy of the models followed the order: ANFIS (R: 0.9990), ANN (R: 0.9807), and RSM (R: 0.9790). The process optimisation gave optimal turbidity (TD) removal efficiencies of 98.98, 97.81, and 96.01% for ANFIS-GA, ANN-GA, and RSM optimisation techniques, respectively. The ANFIS-GA gave the best optimization result at optimum conditions of pH 4, current intensity (3 A), electrolysis time (7.2 min), settling time (23 min), and temperature (43.8 °C). In the kinetics study, the experimental data was analysed using pseudo-first-order (0.8787), pseudo-second-order (0.9395), and Elovich (R: 0.9979) kinetic models; the Elovich model gave the best correlation with the experimental data showing that the process is governed by electrostatic interaction mechanism. This study effectively demonstrated that ECF recovery of AQE can effectively be modelled using RSM, ANN, and ANFIS and be optimised using RSM, ANN-GA, and ANFIS-GA techniques, and the order of performance is ANFIS > ANN > RSM and ANFIS-GA > ANN-GA > RSM, respectively.

摘要

本研究采用铝电极对水产养殖废水(AQE)进行电絮凝-絮凝(ECF)回收的建模和优化。响应面法(RSM)、人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)用于建模,而数值 RSM 和遗传算法(GA)则用于优化工具。此外,还研究了 ECF 过程的动力学,以深入了解控制 ECF 的机制。实验设计采用 RSM 的中心复合设计(CCD)进行。ANFIS 建模通过数据集的网格分区(GP)完成,而 ANN 使用基于多层感知器(MLP)的前馈系统。从统计学上看,模型的预测精度依次为:ANFIS(R:0.9990)、ANN(R:0.9807)和 RSM(R:0.9790)。该工艺优化分别为 ANFIS-GA、ANN-GA 和 RSM 优化技术提供了 98.98%、97.81%和 96.01%的最佳浊度(TD)去除效率。在最佳条件下,ANFIS-GA 给出了最佳的优化结果,条件为 pH 值 4、电流强度(3 A)、电解时间(7.2 min)、沉降时间(23 min)和温度(43.8°C)。在动力学研究中,实验数据分别采用准一级(0.8787)、准二级(0.9395)和 Elovich (R:0.9979)动力学模型进行分析;Elovich 模型与实验数据具有最佳相关性,表明该过程受静电相互作用机制控制。本研究有效地证明了可以有效地使用 RSM、ANN 和 ANFIS 对 AQE 的 ECF 回收进行建模,并可以使用 RSM、ANN-GA 和 ANFIS-GA 技术对其进行优化,性能顺序分别为 ANFIS > ANN > RSM 和 ANFIS-GA > ANN-GA > RSM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验