Suppr超能文献

基于响应面法和人工神经网络集成遗传算法的共底物光发酵生物制氢建模与优化

Modeling and optimization of photo-fermentation biohydrogen production from co-substrates basing on response surface methodology and artificial neural network integrated genetic algorithm.

作者信息

Zhang Xueting, Zhang Quanguo, Li Yameng, Zhang Huan

机构信息

Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China.

Key Laboratory of New Materials and Facilities for Rural Renewable Energy, (MOA of China), Henan Agricultural University, Zhengzhou 450002, China.

出版信息

Bioresour Technol. 2023 Apr;374:128789. doi: 10.1016/j.biortech.2023.128789. Epub 2023 Feb 24.

Abstract

The main aim of the present study was to establish a relationship model between bio-hydrogen yield and the key operating parameters affecting photo-fermentation hydrogen production (PFHP) from co-substrates. Central composite design-response surface methodology (CCD-RSM) and artificial neural network-genetic algorithm (ANN-GA) models were used to optimize the hydrogen production performance from co-substrates. Compared to CCD-RSM, the ANN-GA had higher determination coefficient (R = 0.9785) and lower mean square error (MSE = 9.87), average percentage deviation (APD = 2.72) and error (4.3%), indicating the ANN-GA was more suitable, reliable and accurate in predicting biohydrogen yield from co-substrates by PFHP. The highest biohydrogen yield (99.09 mL/g) predicted by the ANN-GA model at substrate concentration 35.62 g/L, temperature 30.94 °C, initial pH 7.49 and inoculation ratio 32.98 %(v/v), which was 4.20 % higher than the CCD-RSM model (95.10 mL/g).

摘要

本研究的主要目的是建立生物产氢量与影响共底物光发酵产氢(PFHP)的关键操作参数之间的关系模型。采用中心复合设计-响应面法(CCD-RSM)和人工神经网络-遗传算法(ANN-GA)模型优化共底物的产氢性能。与CCD-RSM相比,ANN-GA具有更高的决定系数(R = 0.9785)和更低的均方误差(MSE = 9.87)、平均百分比偏差(APD = 2.72)和误差(4.3%),表明ANN-GA在预测PFHP共底物生物产氢量方面更合适、可靠和准确。ANN-GA模型预测在底物浓度35.62 g/L、温度30.94 °C、初始pH 7.49和接种比例32.98%(v/v)时生物产氢量最高(99.09 mL/g),比CCD-RSM模型(95.10 mL/g)高4.20%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验