Department of Psychology, University of Copenhagen, Øster Farimagsgade 2A, 1353, Copenhagen, Denmark.
DTU COMPUTE, Technical University of Denmark, Building 324, 2800, Kongens Lyngby, Denmark.
J Psychiatr Res. 2022 Aug;152:194-200. doi: 10.1016/j.jpsychires.2022.06.009. Epub 2022 Jun 15.
Structural changes in psychiatric systems have altered treatment opportunities for patients in need of mental healthcare. These changes are possibly associated with an increase in post-discharge crime, reported in the increase of forensic psychiatric populations. As current risk-assessment tools are time-consuming to administer and offer limited accuracy, this study aims to develop a predictive model designed to identify psychiatric patients at risk of committing crime leading to a future forensic psychiatric treatment course.
We utilized the longitudinal quality of the Danish patient registries, identifying the 45.720 adult patients who had contact with the psychiatric system in 2014, of which 474 committed crime leading to a forensic psychiatric treatment course after discharge. Four machine learning models (Logistic Regression, Random Forest, XGBoost and LightGBM) were applied over a range of sociodemographic, judicial, and psychiatric variables.
This study achieves a F1-macro score of 76%, with precision = 57% and recall = 47% reported by the LightGBM algorithm. Our model was therefore able to identify 47% of future forensic psychiatric patients, while making correct predictions in 57% of cases.
The study demonstrates how a clinically useful initial risk-assessment can be achieved using machine learning on data from patient registries. The proposed approach offers the opportunity to flag potential future forensic psychiatric patients, while in contact with the general psychiatric system, hereby allowing early-intervention initiatives to be activated.
精神科系统的结构变化改变了需要精神保健的患者的治疗机会。这些变化可能与出院后犯罪的增加有关,这在法医精神病患者群体中有所报道。由于当前的风险评估工具需要花费大量时间且准确性有限,因此本研究旨在开发一种预测模型,旨在识别有犯罪风险的精神病患者,从而导致未来接受法医精神病治疗。
我们利用丹麦患者登记处的纵向质量,确定了 2014 年与精神科系统有过接触的 45720 名成年患者,其中 474 名患者在出院后因犯罪而接受法医精神病治疗。我们在一系列社会人口统计学、司法和精神科变量上应用了四种机器学习模型(逻辑回归、随机森林、XGBoost 和 LightGBM)。
本研究使用 LightGBM 算法实现了 F1-宏评分 76%,精度为 57%,召回率为 47%。因此,我们的模型能够识别出 47%的未来法医精神病患者,而在 57%的情况下能够做出正确的预测。
该研究表明,如何使用来自患者登记处的数据通过机器学习来实现临床有用的初始风险评估。该方法提供了一种机会,可以在与一般精神科系统接触时标记出潜在的未来法医精神病患者,从而可以启动早期干预措施。