Suppr超能文献

使用机器学习预测丹麦精神病院出院后 30 天内的自杀。

Using machine learning to predict suicide in the 30 days after discharge from psychiatric hospital in Denmark.

机构信息

Department of Epidemiology, Boston University School of Public Health, Massachusetts, USA.

Department of Psychological and Brain Sciences, Boston University, Massachusetts, USA.

出版信息

Br J Psychiatry. 2021 Aug;219(2):440-447. doi: 10.1192/bjp.2021.19.

Abstract

BACKGROUND

Suicide risk is high in the 30 days after discharge from psychiatric hospital, but knowledge of the profiles of high-risk patients remains limited.

AIMS

To examine sex-specific risk profiles for suicide in the 30 days after discharge from psychiatric hospital, using machine learning and Danish registry data.

METHOD

We conducted a case-cohort study capturing all suicide cases occurring in the 30 days after psychiatric hospital discharge in Denmark from 1 January 1995 to 31 December 2015 (n = 1205). The comparison subcohort was a 5% random sample of all persons born or residing in Denmark on 1 January 1995, and who had a first psychiatric hospital admission between 1995 and 2015 (n = 24 559). Predictors included diagnoses, surgeries, prescribed medications and demographic information. The outcome was suicide death recorded in the Danish Cause of Death Registry.

RESULTS

For men, prescriptions for anxiolytics and drugs used in addictive disorders interacted with other characteristics in the risk profiles (e.g. alcohol-related disorders, hypnotics and sedatives) that led to higher risk of postdischarge suicide. In women, there was interaction between recurrent major depression and other characteristics (e.g. poisoning, low income) that led to increased risk of suicide. Random forests identified important suicide predictors: alcohol-related disorders and nicotine dependence in men and poisoning in women.

CONCLUSIONS

Our findings suggest that accurate prediction of suicide during the high-risk period immediately after psychiatric hospital discharge may require a complex evaluation of multiple factors for men and women.

摘要

背景

精神科医院出院后 30 天内的自杀风险很高,但对高风险患者的特征仍知之甚少。

目的

使用机器学习和丹麦登记数据,研究精神科医院出院后 30 天内自杀的性别特异性风险特征。

方法

我们进行了一项病例队列研究,该研究捕获了丹麦 1995 年 1 月 1 日至 2015 年 12 月 31 日期间精神科医院出院后 30 天内发生的所有自杀案例(n=1205)。对照子队列是丹麦 1995 年 1 月 1 日出生或居住的所有人群的 5%随机样本,他们在 1995 年至 2015 年期间首次入院精神科医院(n=24559)。预测因子包括诊断、手术、处方药物和人口统计学信息。结果是在丹麦死因登记处记录的自杀死亡。

结果

对于男性,抗焦虑药和用于成瘾障碍的药物与风险特征中的其他特征(例如与酒精相关的障碍、催眠药和镇静剂)相互作用,导致出院后自杀风险增加。对于女性,复发性重度抑郁症与其他特征(例如中毒、低收入)相互作用,导致自杀风险增加。随机森林确定了重要的自杀预测因子:男性的与酒精相关的障碍和尼古丁依赖,以及女性的中毒。

结论

我们的研究结果表明,准确预测精神科医院出院后高风险期内的自杀可能需要对男性和女性的多个因素进行复杂评估。

相似文献

2
3
Sex-Specific Risk Profiles for Suicide Among Persons with Substance Use Disorders in Denmark.
Addiction. 2021 Oct;116(10):2882-2892. doi: 10.1111/add.15455. Epub 2021 Mar 10.
6
Suicide prediction among men and women with depression: A population-based study.
J Psychiatr Res. 2021 Oct;142:275-282. doi: 10.1016/j.jpsychires.2021.08.003. Epub 2021 Aug 11.
7
Risk factors for suicide one year after discharge from hospitalization for physical illness in Denmark.
Gen Hosp Psychiatry. 2022 Nov-Dec;79:76-117. doi: 10.1016/j.genhosppsych.2022.09.004. Epub 2022 Sep 29.
9
Suicide risk in relation to psychiatric hospitalization: evidence based on longitudinal registers.
Arch Gen Psychiatry. 2005 Apr;62(4):427-32. doi: 10.1001/archpsyc.62.4.427.
10
Multiple adverse outcomes following first discharge from inpatient psychiatric care: a national cohort study.
Lancet Psychiatry. 2019 Jul;6(7):582-589. doi: 10.1016/S2215-0366(19)30180-4. Epub 2019 Jun 3.

引用本文的文献

1
Machine learning algorithms and their predictive accuracy for suicide and self-harm: Systematic review and meta-analysis.
PLoS Med. 2025 Sep 11;22(9):e1004581. doi: 10.1371/journal.pmed.1004581. eCollection 2025 Sep.
2
Meta-analysis of risk factors for suicide after psychiatric discharge and meta-regression of the duration of follow-up.
Aust N Z J Psychiatry. 2025 Jun 27;59(8):48674251348372. doi: 10.1177/00048674251348372.
4
Risk Prediction Model for Non-Suicidal Self-Injury in Chinese Adolescents with Major Depressive Disorder Based on Machine Learning.
Neuropsychiatr Dis Treat. 2024 Aug 8;20:1539-1551. doi: 10.2147/NDT.S460021. eCollection 2024.
5
Premature Death, Suicide, and Nonlethal Intentional Self-Harm After Psychiatric Discharge.
JAMA Netw Open. 2024 Jun 3;7(6):e2417131. doi: 10.1001/jamanetworkopen.2024.17131.
6
Machine learning and the prediction of suicide in psychiatric populations: a systematic review.
Transl Psychiatry. 2024 Mar 9;14(1):140. doi: 10.1038/s41398-024-02852-9.
8
Risk of suicide attempts and self-harm after 1.4 million general medical hospitalizations of men with mental illness.
J Psychiatr Res. 2023 Jan;157:50-56. doi: 10.1016/j.jpsychires.2022.10.035. Epub 2022 Nov 14.
10
Suicide prediction among men and women with depression: A population-based study.
J Psychiatr Res. 2021 Oct;142:275-282. doi: 10.1016/j.jpsychires.2021.08.003. Epub 2021 Aug 11.

本文引用的文献

1
Addressing Measurement Error in Random Forests Using Quantitative Bias Analysis.
Am J Epidemiol. 2021 Sep 1;190(9):1830-1840. doi: 10.1093/aje/kwab010.
2
Using Administrative Data to Predict Suicide After Psychiatric Hospitalization in the Veterans Health Administration System.
Front Psychiatry. 2020 May 6;11:390. doi: 10.3389/fpsyt.2020.00390. eCollection 2020.
3
An analysis of the relationship between chronic obstructive pulmonary disease, smoking and depression in an integrated healthcare system.
Gen Hosp Psychiatry. 2020 May-Jun;64:72-79. doi: 10.1016/j.genhosppsych.2020.03.007. Epub 2020 Apr 4.
4
5
Machine Learning for Suicide Research-Can It Improve Risk Factor Identification?
JAMA Psychiatry. 2020 Jan 1;77(1):13-14. doi: 10.1001/jamapsychiatry.2019.2896.
6
Meta-analysis of suicide rates in the first week and the first month after psychiatric hospitalisation.
BMJ Open. 2019 Mar 23;9(3):e023883. doi: 10.1136/bmjopen-2018-023883.
7
Gender differences in suicidal behavior in adolescents and young adults: systematic review and meta-analysis of longitudinal studies.
Int J Public Health. 2019 Mar;64(2):265-283. doi: 10.1007/s00038-018-1196-1. Epub 2019 Jan 12.
8
Predictive value of stroke discharge diagnoses in the Danish National Patient Register.
Scand J Public Health. 2017 Aug;45(6):630-636. doi: 10.1177/1403494817716582. Epub 2017 Jul 13.
9
Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration.
Int J Methods Psychiatr Res. 2017 Sep;26(3). doi: 10.1002/mpr.1575. Epub 2017 Jul 4.
10
Suicide Rates After Discharge From Psychiatric Facilities: A Systematic Review and Meta-analysis.
JAMA Psychiatry. 2017 Jul 1;74(7):694-702. doi: 10.1001/jamapsychiatry.2017.1044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验