Department of Imaging and Interventional Radiology, CU lab of AI in radiology (CLAIR), Chinese University of Hong Kong, Prince of Wales Hospital, Shatin N.T., Hong Kong, China; School of Professional Education and Executive Development, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
Center for Intelligent Systems, Central Queensland University, Brisbane, Australia.
Comput Methods Programs Biomed. 2022 Jul;222:106963. doi: 10.1016/j.cmpb.2022.106963. Epub 2022 Jun 17.
Precise segmentation of knee tissues from magnetic resonance imaging (MRI) is critical in quantitative imaging and diagnosis. Convolutional neural networks (CNNs), being state of the art, often challenged by the lack of image-specific adaptation, such as low tissue contrasts and structural inhomogeneities, thereby leading to incomplete segmentation results.
This paper presents a deep learning-based automatic segmentation framework for precise knee tissue segmentation. A novel deep collaborative method is proposed, which consists of an encoder-decoder-based segmentation network in combination with a low rank tensor-reconstructed segmentation network. Low rank reconstruction in MRI tensor sub-blocks is introduced to exploit the morphological variations in knee tissues. To model the tissue boundary regions and effectively utilize the superimposed regions, trimap generation is proposed for defining high, medium and low confidence regions from the multipath CNNs. The secondary path with low rank reconstructed input mitigates the conditions in which the primary segmentation network can potentially fail and overlook the boundary regions. The outcome of the segmentation is solved as an alpha matting problem by blending the trimap with the source input.
Experiments on Osteoarthritis Initiative (OAI) datasets with all the 6 musculoskeletal tissues provide an overall segmentation dice score of 0.8925, where Femoral and Tibial part of cartilage achieving an average dice exceeding 0.9. The volumetric metrics also indicate the superior performances in all tissue compartments.
Experiments on Osteoarthritis Initiative (OAI) datasets and a self-prepared scan validate the effectiveness of the proposed method. Inclusion of extra prediction scale allowed the model to distinguish and segment the tissue boundary accurately. We specifically demonstrate the application of the proposed method in a cartilage segmentation-based thickness map for diagnosis purposes.
从磁共振成像(MRI)中精确分割膝关节组织对于定量成像和诊断至关重要。卷积神经网络(CNNs)是当前的技术前沿,但经常受到缺乏图像特定适应性的挑战,例如组织对比度低和结构不均匀,从而导致分割结果不完整。
本文提出了一种基于深度学习的精确膝关节组织分割自动分割框架。提出了一种新的深度协作方法,该方法由基于编码器-解码器的分割网络与低秩张量重构分割网络相结合。在 MRI 张量子块中引入低秩重建,以利用膝关节组织的形态变化。为了建模组织边界区域并有效地利用叠加区域,从多路径 CNN 中提出了 Trimap 生成,以定义高、中、低置信区域。具有低秩重构输入的次要路径可以减轻主分割网络可能失败和忽略边界区域的情况。分割结果通过将 Trimap 与源输入混合来解决作为 Alpha 遮罩问题。
在包含所有 6 种骨骼肌肉组织的骨关节炎倡议(OAI)数据集上进行的实验提供了总体分割骰子评分 0.8925,其中股骨和胫骨软骨部分的平均骰子评分超过 0.9。体积指标也表明在所有组织隔室中都具有优越的性能。
在骨关节炎倡议(OAI)数据集和自行准备的扫描上的实验验证了所提出方法的有效性。包括额外的预测尺度允许模型准确地区分和分割组织边界。我们特别展示了所提出的方法在基于软骨分割的厚度图中的应用,用于诊断目的。