文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

苏珊:使用对抗网络分割未注释的图像结构。

SUSAN: segment unannotated image structure using adversarial network.

机构信息

Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.

出版信息

Magn Reson Med. 2019 May;81(5):3330-3345. doi: 10.1002/mrm.27627. Epub 2018 Dec 10.


DOI:10.1002/mrm.27627
PMID:30536427
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7140982/
Abstract

PURPOSE: To describe and evaluate a segmentation method using joint adversarial and segmentation convolutional neural network to achieve accurate segmentation using unannotated MR image datasets. THEORY AND METHODS: A segmentation pipeline was built using joint adversarial and segmentation network. A convolutional neural network technique called cycle-consistent generative adversarial network (CycleGAN) was applied as the core of the method to perform unpaired image-to-image translation between different MR image datasets. A joint segmentation network was incorporated into the adversarial network to obtain additional functionality for semantic segmentation. The fully automated segmentation method termed as SUSAN was tested for segmenting bone and cartilage on 2 clinical knee MR image datasets using images and annotated segmentation masks from an online publicly available knee MR image dataset. The segmentation results were compared using quantitative segmentation metrics with the results from a supervised U-Net segmentation method and 2 registration methods. The Wilcoxon signed-rank test was used to evaluate the value difference of quantitative metrics between different methods. RESULTS: The proposed method SUSAN provided high segmentation accuracy with results comparable to the supervised U-Net segmentation method (most quantitative metrics having P > 0.05) and significantly better than a multiatlas registration method (all quantitative metrics having P < 0.001) and a direct registration method (all quantitative metrics having P< 0.0001) for the clinical knee image datasets. SUSAN also demonstrated the applicability for segmenting knee MR images with different tissue contrasts. CONCLUSION: SUSAN performed rapid and accurate tissue segmentation for multiple MR image datasets without the need for sequence specific segmentation annotation. The joint adversarial and segmentation network and training strategy have promising potential applications in medical image segmentation.

摘要

目的:描述并评估一种使用联合对抗和分割卷积神经网络的分割方法,以使用未标记的磁共振(MR)图像数据集实现准确的分割。

理论和方法:使用联合对抗和分割网络构建分割管道。应用一种称为循环一致生成对抗网络(CycleGAN)的卷积神经网络技术作为该方法的核心,在不同的 MR 图像数据集之间进行非配对的图像到图像转换。联合分割网络被合并到对抗网络中,以获得用于语义分割的附加功能。完全自动化的分割方法 SUSAN 被用于在 2 个临床膝关节 MR 图像数据集上分割骨和软骨,使用来自在线公开的膝关节 MR 图像数据集的图像和注释分割掩模。使用定量分割指标将分割结果与监督 U-Net 分割方法和 2 种配准方法的结果进行比较。Wilcoxon 符号秩检验用于评估不同方法之间定量指标值差异的统计学意义。

结果:所提出的方法 SUSAN 提供了较高的分割准确性,结果与监督 U-Net 分割方法相当(大多数定量指标的 P 值>0.05),并且明显优于多图谱配准方法(所有定量指标的 P 值<0.001)和直接配准方法(所有定量指标的 P 值<0.0001),用于临床膝关节图像数据集。SUSAN 还证明了在具有不同组织对比度的膝关节 MR 图像分割中的适用性。

结论:SUSAN 可以快速准确地对多个 MR 图像数据集进行组织分割,而无需特定于序列的分割注释。联合对抗和分割网络以及训练策略在医学图像分割中具有广阔的应用前景。

相似文献

[1]
SUSAN: segment unannotated image structure using adversarial network.

Magn Reson Med. 2018-12-10

[2]
Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging.

Magn Reson Med. 2017-7-21

[3]
Deep convolutional neural network for segmentation of knee joint anatomy.

Magn Reson Med. 2018-5-17

[4]
The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.

Comput Med Imaging Graph. 2020-12

[5]
Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.

Magn Reson Med. 2020-7

[6]
Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.

Med Phys. 2019-5-6

[7]
High-performance rapid MR parameter mapping using model-based deep adversarial learning.

Magn Reson Imaging. 2020-12

[8]
Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.

Radiology. 2018-3-27

[9]
CycleSGAN: A cycle-consistent and semantics-preserving generative adversarial network for unpaired MR-to-CT image synthesis.

Comput Med Imaging Graph. 2024-10

[10]
[A generative adversarial network-based unsupervised domain adaptation method for magnetic resonance image segmentation].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022-12-25

引用本文的文献

[1]
A fully automatic knee subregion segmentation network based on tissue segmentation and anatomical geometry.

Sci Rep. 2025-8-19

[2]
A method framework of semi-automatic knee bone segmentation and reconstruction from computed tomography (CT) images.

Quant Imaging Med Surg. 2024-10-1

[3]
DeepKOA: a deep-learning model for predicting progression in knee osteoarthritis using multimodal magnetic resonance images from the osteoarthritis initiative.

Quant Imaging Med Surg. 2023-8-1

[4]
3D Domain Adaptive Instance Segmentation via Cyclic Segmentation GANs.

IEEE J Biomed Health Inform. 2023-8

[5]
[A generative adversarial network-based unsupervised domain adaptation method for magnetic resonance image segmentation].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022-12-25

[6]
AI-Assisted Diagnosis and Decision-Making Method in Developing Countries for Osteosarcoma.

Healthcare (Basel). 2022-11-18

[7]
Automated knee cartilage segmentation for heterogeneous clinical MRI using generative adversarial networks with transfer learning.

Quant Imaging Med Surg. 2022-5

[8]
Discovering Knee Osteoarthritis Imaging Features for Diagnosis and Prognosis: Review of Manual Imaging Grading and Machine Learning Approaches.

J Healthc Eng. 2022

[9]
Knee Injury Detection Using Deep Learning on MRI Studies: A Systematic Review.

Diagnostics (Basel). 2022-2-19

[10]
Fully Automatic Knee Bone Detection and Segmentation on Three-Dimensional MRI.

Diagnostics (Basel). 2022-1-6

本文引用的文献

[1]
Deep Learning Approach for Evaluating Knee MR Images: Achieving High Diagnostic Performance for Cartilage Lesion Detection.

Radiology. 2018-7-31

[2]
Deep convolutional neural network for segmentation of knee joint anatomy.

Magn Reson Med. 2018-5-17

[3]
Technical Note: Deep learning based MRAC using rapid ultrashort echo time imaging.

Med Phys. 2018-5-15

[4]
Bayesian convolutional neural network based MRI brain extraction on nonhuman primates.

Neuroimage. 2018-3-28

[5]
Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

J Magn Reson Imaging. 2018-2-13

[6]
Pulmonary ventilation imaging in asthma and cystic fibrosis using oxygen-enhanced 3D radial ultrashort echo time MRI.

J Magn Reson Imaging. 2017-10-31

[7]
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.

Radiology. 2018-2

[8]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

[9]
Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging.

Magn Reson Med. 2017-7-21

[10]
3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study.

Neuroimage. 2017-4-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索