Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
Magn Reson Med. 2019 May;81(5):3330-3345. doi: 10.1002/mrm.27627. Epub 2018 Dec 10.
PURPOSE: To describe and evaluate a segmentation method using joint adversarial and segmentation convolutional neural network to achieve accurate segmentation using unannotated MR image datasets. THEORY AND METHODS: A segmentation pipeline was built using joint adversarial and segmentation network. A convolutional neural network technique called cycle-consistent generative adversarial network (CycleGAN) was applied as the core of the method to perform unpaired image-to-image translation between different MR image datasets. A joint segmentation network was incorporated into the adversarial network to obtain additional functionality for semantic segmentation. The fully automated segmentation method termed as SUSAN was tested for segmenting bone and cartilage on 2 clinical knee MR image datasets using images and annotated segmentation masks from an online publicly available knee MR image dataset. The segmentation results were compared using quantitative segmentation metrics with the results from a supervised U-Net segmentation method and 2 registration methods. The Wilcoxon signed-rank test was used to evaluate the value difference of quantitative metrics between different methods. RESULTS: The proposed method SUSAN provided high segmentation accuracy with results comparable to the supervised U-Net segmentation method (most quantitative metrics having P > 0.05) and significantly better than a multiatlas registration method (all quantitative metrics having P < 0.001) and a direct registration method (all quantitative metrics having P< 0.0001) for the clinical knee image datasets. SUSAN also demonstrated the applicability for segmenting knee MR images with different tissue contrasts. CONCLUSION: SUSAN performed rapid and accurate tissue segmentation for multiple MR image datasets without the need for sequence specific segmentation annotation. The joint adversarial and segmentation network and training strategy have promising potential applications in medical image segmentation.
目的:描述并评估一种使用联合对抗和分割卷积神经网络的分割方法,以使用未标记的磁共振(MR)图像数据集实现准确的分割。
理论和方法:使用联合对抗和分割网络构建分割管道。应用一种称为循环一致生成对抗网络(CycleGAN)的卷积神经网络技术作为该方法的核心,在不同的 MR 图像数据集之间进行非配对的图像到图像转换。联合分割网络被合并到对抗网络中,以获得用于语义分割的附加功能。完全自动化的分割方法 SUSAN 被用于在 2 个临床膝关节 MR 图像数据集上分割骨和软骨,使用来自在线公开的膝关节 MR 图像数据集的图像和注释分割掩模。使用定量分割指标将分割结果与监督 U-Net 分割方法和 2 种配准方法的结果进行比较。Wilcoxon 符号秩检验用于评估不同方法之间定量指标值差异的统计学意义。
结果:所提出的方法 SUSAN 提供了较高的分割准确性,结果与监督 U-Net 分割方法相当(大多数定量指标的 P 值>0.05),并且明显优于多图谱配准方法(所有定量指标的 P 值<0.001)和直接配准方法(所有定量指标的 P 值<0.0001),用于临床膝关节图像数据集。SUSAN 还证明了在具有不同组织对比度的膝关节 MR 图像分割中的适用性。
结论:SUSAN 可以快速准确地对多个 MR 图像数据集进行组织分割,而无需特定于序列的分割注释。联合对抗和分割网络以及训练策略在医学图像分割中具有广阔的应用前景。
Magn Reson Med. 2018-12-10
Magn Reson Med. 2018-5-17
Comput Med Imaging Graph. 2020-12
Magn Reson Imaging. 2020-12
Comput Med Imaging Graph. 2024-10
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022-12-25
Quant Imaging Med Surg. 2024-10-1
IEEE J Biomed Health Inform. 2023-8
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022-12-25
Healthcare (Basel). 2022-11-18
Diagnostics (Basel). 2022-2-19
Diagnostics (Basel). 2022-1-6
Magn Reson Med. 2018-5-17
J Magn Reson Imaging. 2018-2-13
J Magn Reson Imaging. 2017-10-31
Med Image Anal. 2017-7-26