Suppr超能文献

累积应激源效应对不确定性和生态风险的影响。

The impact of cumulative stressor effects on uncertainty and ecological risk.

机构信息

School of Science, University of Waikato, Hamilton, New Zealand.

School of Science, University of Waikato, Hamilton, New Zealand; National Institute for Water and Atmospheric research, Hamilton, New Zealand.

出版信息

Sci Total Environ. 2022 Oct 10;842:156877. doi: 10.1016/j.scitotenv.2022.156877. Epub 2022 Jun 23.

Abstract

To enable environmental management actions to be more effectively prioritized, cumulative effects between multiple stressors need to be accounted for in risk-assessment frameworks. Ecological risk and uncertainty are generally high when multiple stressors occur. In the face of high uncertainty, transparent communication is essential to inform decision-making. The impact of stressor interactions on risk and uncertainty was assessed using generalized linear models for additive and multiplicative effect of six anthropogenic stressors on the abundance of estuarine macrofauna across New Zealand. Models that accounted for multiplicative stressor interactions demonstrated that non-additive effects dominated, had increased explanatory power (6 to 73 % relative increase between models), and thereby reduced the risk of unexpected ecological responses to stress. Secondly, 3D-plots provide important insights in the direction, magnitude and gradients of change, and aid transparency and communication of complex stressor effects. Notably, small changes in a stressor can cause a disproportionally steep gradient of change for a synergistic effect where the tolerance to stressors are lost, and would invoke precautionary management. 3D-plots were able to clearly identify directional shifts where the nature of the interaction changed from antagonistic to synergistic along increasing stressor gradients. For example, increased nitrogen load and exposure caused a shift from positive to negative effect on the abundance of a deposit-feeding polychaete (Magelona). Assessments relying on model coefficient estimates, which provide one effect term, could not capture the complexities observed in 3D-plots and are at risk of mis-identifying interaction types. Finally, visualising model uncertainty demonstrated that although error terms were higher for multiplicative models, they better captured the uncertainty caused by data availability. Together, the steep gradients of change identified in 3D-plots and the higher uncertainty in model predictions in multiplicative models urges more conservative limits to be set for management that account for risk and uncertainty in multiple stressor effects.

摘要

为了使环境管理行动更有效地确定优先次序,需要在风险评估框架中考虑多个胁迫因素之间的累积效应。当多个胁迫因素同时存在时,生态风险和不确定性通常很高。面对高度不确定性,透明的沟通对于告知决策至关重要。使用广义线性模型评估了胁迫因素相互作用对风险和不确定性的影响,这些模型考虑了六个人为胁迫因素对新西兰河口大型动物丰度的加性和乘法效应。考虑乘法胁迫相互作用的模型表明,非加性效应占主导地位,具有更高的解释能力(模型之间的相对增加为 6%至 73%),从而降低了对胁迫的意外生态反应的风险。其次,3D 图提供了关于变化方向、幅度和梯度的重要见解,并有助于透明和沟通复杂的胁迫效应。值得注意的是,胁迫因素的微小变化可能导致协同效应下的变化梯度不成比例地陡峭,从而失去对胁迫因素的耐受性,并引发预防管理。3D 图能够清楚地识别交互作用性质从拮抗到协同随胁迫梯度增加而变化的方向变化。例如,氮负荷和暴露的增加导致摄食多毛类动物(Magelona)丰度的正效应转变为负效应。依赖于模型系数估计的评估,这些估计提供了一个效应项,无法捕捉到 3D 图中观察到的复杂性,并且有错误识别交互类型的风险。最后,可视化模型不确定性表明,尽管乘法模型的误差项更高,但它们更好地捕捉了数据可用性引起的不确定性。总之,3D 图中确定的变化陡峭梯度和乘法模型中更高的模型预测不确定性促使为管理设定更保守的限制,以考虑多个胁迫因素效应中的风险和不确定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验