Suppr超能文献

结构洞察功能脑连接组的个体可变性架构。

Structural insight into the individual variability architecture of the functional brain connectome.

机构信息

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.

School of Systems Science, Beijing Normal University, Beijing 100875, China.

出版信息

Neuroimage. 2022 Oct 1;259:119387. doi: 10.1016/j.neuroimage.2022.119387. Epub 2022 Jun 22.

Abstract

Human cognition and behaviors depend upon the brain's functional connectomes, which vary remarkably across individuals. However, whether and how the functional connectome individual variability architecture is structurally constrained remains largely unknown. Using tractography- and morphometry-based network models, we observed the spatial convergence of structural and functional connectome individual variability, with higher variability in heteromodal association regions and lower variability in primary regions. We demonstrated that functional variability is significantly predicted by a unifying structural variability pattern and that this prediction follows a primary-to-heteromodal hierarchical axis, with higher accuracy in primary regions and lower accuracy in heteromodal regions. We further decomposed group-level connectome variability patterns into individual unique contributions and uncovered the structural-functional correspondence that is associated with individual cognitive traits. These results advance our understanding of the structural basis of individual functional variability and suggest the importance of integrating multimodal connectome signatures for individual differences in cognition and behaviors.

摘要

人类认知和行为依赖于大脑的功能连接组,个体之间的功能连接组差异非常显著。然而,功能连接组个体变异性结构是否以及如何受到结构约束在很大程度上仍是未知的。我们使用基于轨迹和形态测量的网络模型,观察到结构和功能连接组个体变异性的空间收敛,在异模态联合区域的变异性更高,而在主要区域的变异性更低。我们证明了功能变异性可以由统一的结构变异性模式显著预测,并且这种预测遵循从主要区域到异模态区域的层级轴,在主要区域的预测准确性更高,而异模态区域的预测准确性更低。我们进一步将组水平连接组变异性模式分解为个体独特贡献,并揭示了与个体认知特征相关的结构-功能对应关系。这些结果推进了我们对个体功能变异性的结构基础的理解,并表明整合多模态连接组特征对于认知和行为的个体差异的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验