Suppr超能文献

优化高固体厌氧共消化过程中食物垃圾和污水污泥的间歇性混合的效果:模拟、性能和机制。

Effect of optimized intermittent mixing during high-solids anaerobic co-digestion of food waste and sewage sludge: Simulation, performance, and mechanisms.

机构信息

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.

出版信息

Sci Total Environ. 2022 Oct 10;842:156882. doi: 10.1016/j.scitotenv.2022.156882. Epub 2022 Jun 23.

Abstract

Inadequate mixing has been proven to be a major cause of anaerobic digester failure. This study revealed the mechanism of mixing intervals on high-solids anaerobic co-digestion (HS-AcoD) of food waste (FW) and sewage sludge (SS). Optimized intermittent mixing time (15 min/h) was determined through computational fluid dynamics (CFD) simulation. Experimental results indicated that the simulated intermittent mixing could shorten digestion time and increase cumulative methane output (366.8 mL/gVS) compared with continuous mixing and unmixing. Mixing could considerably accelerate substrate solubilization and hydrolysis. Maximum rates of acidogenesis (53.35 %) and methanogenesis (49.41 %) were observed with an optimized intermittent mixing (15 min/h). Vigorous mixing induced apoptosis and disrupted syntrophic metabolism, whereas intermittent mixing promoted the syntrophic metabolism between Syntrophomonas and Methanobacterium, and led to an enrichment of genes involved in acidogenic and methanogenic pathways. These findings have important implications for the development of an optimized intermittent mixing strategy for maximizing HS-AcoD efficiency of FW and SS.

摘要

混合不充分已被证明是厌氧消化器故障的主要原因。本研究揭示了混合间隔时间对食物废物(FW)和污水污泥(SS)的高固体厌氧共消化(HS-AcoD)的影响机制。通过计算流体动力学(CFD)模拟确定了优化的间歇混合时间(15 分钟/小时)。实验结果表明,与连续混合和不混合相比,模拟的间歇混合可以缩短消化时间并增加累积甲烷产量(366.8 毫升/克 VS)。混合可以显著加速底物的溶解和水解。优化的间歇混合(15 分钟/小时)可观察到产酸菌(53.35%)和产甲烷菌(49.41%)的最大速率。剧烈的混合会诱导细胞凋亡并破坏共代谢,而间歇混合则促进了产酸菌和产甲烷菌之间的共代谢,并导致与产酸和产甲烷途径相关的基因富集。这些发现对开发优化的间歇混合策略以最大程度地提高 FW 和 SS 的 HS-AcoD 效率具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验