Suppr超能文献

PDSM-LGCN:基于光图卷积神经网络的药物敏感性相关 microRNA 预测

PDSM-LGCN: Prediction of drug sensitivity associated microRNAs via light graph convolution neural network.

机构信息

School of Computer Science and Engineering, Central South University, Tianxin District, Hunan 410083, China.

出版信息

Methods. 2022 Sep;205:106-113. doi: 10.1016/j.ymeth.2022.06.005. Epub 2022 Jun 23.

Abstract

Cancer has become one of the critical diseases threatening human life and health. The sensitivity difference of cancer drugs has always been a critical cause of the treatment come to nothing. Once drug resistance occurs, it will make the anticancer treatment or even various drugs ineffective. With the deepening of cancer research, a growing number of evidence shows that microRNA has a particular regulatory effect on the sensitivity of cancer drugs, which provides new research ideas. However, using traditional biological experiments to verify and discover the relations of microRNA-drug sensitivity is cumbersome and time-consuming, significantly slowing down cancer drug sensitivity's research progress. Therefore, this paper proposes a computational method (PDSM-LGCN) that spreads information through the high-order connection between cancer drug sensitivity and microRNA. At the same time, the model constructs an optimized-GCN as an embedding propagation layer to obtain the practical embeddings of microRNA and medicines. Finally, based on a collaborative filtering algorithm, the model brings the prediction score between microRNA and drug sensitivity. The results of fivefold cross-validation show that the AUC of PDSM-LGCN is 0.8872, and the AUPR is as high as 0.9026. At the same time, we also reproduced the five latest models of similar problems and compared the results. Our model has the best comprehensive effect among them. In addition, the reliability of PDSM-LGCN was further confirmed through the case study of Cisplatin and Doxorubicin, which can be used as a powerful tool for clinical and biological research. The source code and datasets can be obtained from https://github.com/19990915fzy/PDSM-LGCN/.

摘要

癌症已成为威胁人类生命和健康的重大疾病之一。癌症药物的敏感性差异一直是治疗失败的关键原因之一。一旦产生耐药性,将会使抗癌治疗甚至各种药物失效。随着癌症研究的深入,越来越多的证据表明,microRNA 对癌症药物的敏感性具有特殊的调节作用,为其提供了新的研究思路。然而,利用传统的生物学实验来验证和发现 microRNA-药物敏感性之间的关系既繁琐又耗时,极大地减缓了癌症药物敏感性的研究进展。因此,本文提出了一种计算方法(PDSM-LGCN),通过癌症药物敏感性和 microRNA 之间的高阶连接来传播信息。同时,该模型构建了一个优化的 GCN 作为嵌入传播层,以获得 microRNA 和药物的实际嵌入。最后,基于协同过滤算法,模型带来了 microRNA 和药物敏感性之间的预测得分。五重交叉验证的结果表明,PDSM-LGCN 的 AUC 为 0.8872,AUPR 高达 0.9026。同时,我们还重现了五个类似问题的最新模型,并比较了结果。我们的模型在其中具有最佳的综合效果。此外,通过 Cisplatin 和 Doxorubicin 的案例研究进一步证实了 PDSM-LGCN 的可靠性,可作为临床和生物学研究的有力工具。源代码和数据集可从 https://github.com/19990915fzy/PDSM-LGCN/ 获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验