Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
Neurobiol Dis. 2022 Sep;171:105801. doi: 10.1016/j.nbd.2022.105801. Epub 2022 Jun 23.
Mild traumatic brain injury (mTBI) gives rise to a remarkable breadth of pathobiological consequences, principal among which are traumatic axonal injury and perturbation of the functional integrity of neuronal networks that may arise secondary to the elimination of the presynaptic contribution of axotomized neurons. Because there exists a vast diversity of neocortical neuron subtypes, it is imperative to elucidate the relative vulnerability to axotomy among different subtypes. Toward this end, we exploited SOM-IRES-Cre mice to investigate the consequences of the central fluid percussion model of mTBI on the microanatomical integrity and the functional efficacy of the somatostatin (SOM) interneuron population, one of the principal subtypes of neocortical interneuron. We found that the SOM population is resilient to axotomy, representing only 10% of the global burden of inhibitory interneuron axotomy, a result congruous with past work demonstrating that parvalbumin (PV) interneurons bear most of the burden of interneuron axotomy. However, the intact structure of SOM interneurons after injury did not translate to normal cellular function. One day after mTBI, the SOM population is more intrinsically excitable and demonstrates enhanced synaptic efficacy upon post-synaptic layer 5 pyramidal neurons as measured by optogenetics, yet the global evoked inhibitory tone within layer 5 is stable. Simultaneously, there exists a significant increase in the frequency of miniature inhibitory post-synaptic currents within layer 5 pyramidal neurons. These results are consistent with a scheme in which 1 day after mTBI, SOM interneurons are stimulated to compensate for the release from inhibition of layer 5 pyramidal neurons secondary to the disproportionate axotomy of PV interneurons. The enhancement of SOM interneuron intrinsic excitability and synaptic efficacy may represent the initial phase of a dynamic process of attempted autoregulation of neocortical network homeostasis secondary to mTBI.
轻度创伤性脑损伤 (mTBI) 会引起广泛的病理生物学后果,其中主要包括创伤性轴索损伤和神经元网络功能完整性的破坏,这可能是由于轴突切断神经元的突触前贡献被消除而引起的。由于新皮层神经元亚型存在巨大的多样性,因此阐明不同亚型对轴突切断的相对易感性至关重要。为此,我们利用 SOM-IRES-Cre 小鼠来研究 mTBI 的中央液击模型对生长抑素 (SOM) 中间神经元群体的微观解剖完整性和功能效力的影响,SOM 中间神经元是新皮层中间神经元的主要亚型之一。我们发现 SOM 群体对轴突切断具有很强的抵抗力,仅占抑制性中间神经元轴突总负荷的 10%,这一结果与过去的研究结果一致,即 Parvalbumin (PV) 中间神经元承受着大部分中间神经元轴突切断的负担。然而,损伤后 SOM 中间神经元的完整结构并没有转化为正常的细胞功能。mTBI 后 1 天,SOM 群体的内在兴奋性更高,并且在光遗传学测量时表现出增强的突触效力,而第 5 层的整体诱发抑制性张力是稳定的。同时,第 5 层锥体神经元中的微小抑制性突触后电流的频率显著增加。这些结果与以下方案一致:mTBI 后 1 天,SOM 中间神经元被刺激以补偿由于 PV 中间神经元不成比例的轴突切断而导致的第 5 层锥体神经元抑制的释放。SOM 中间神经元内在兴奋性和突触效力的增强可能代表 mTBI 后试图自我调节新皮层网络内稳态的动态过程的初始阶段。