Suppr超能文献

皮质 GABA 能神经元的综合形态电和转录组分类

Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells.

机构信息

Allen Institute for Brain Science, Seattle, WA 98109, USA.

Allen Institute for Brain Science, Seattle, WA 98109, USA.

出版信息

Cell. 2020 Nov 12;183(4):935-953.e19. doi: 10.1016/j.cell.2020.09.057.

Abstract

Neurons are frequently classified into distinct types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 4,200 mouse visual cortical GABAergic interneurons and reconstructed the local morphologies of 517 of those neurons. We find that most transcriptomic types (t-types) occupy specific laminar positions within visual cortex, and, for most types, the cells mapping to a t-type exhibit consistent electrophysiological and morphological properties. These properties display both discrete and continuous variation among t-types. Through multimodal integrated analysis, we define 28 met-types that have congruent morphological, electrophysiological, and transcriptomic properties and robust mutual predictability. We identify layer-specific axon innervation pattern as a defining feature distinguishing different met-types. These met-types represent a unified definition of cortical GABAergic interneuron types, providing a systematic framework to capture existing knowledge and bridge future analyses across different modalities.

摘要

神经元通常根据结构、生理或遗传属性分为不同的类型。为了更好地限制神经元细胞类型的定义,我们对超过 4200 个小鼠视觉皮层 GABA 能中间神经元的转录组和内在生理特性进行了表征,并重建了其中 517 个神经元的局部形态。我们发现,大多数转录组类型(t 型)在视觉皮层中占据特定的层位,并且对于大多数类型,映射到 t 型的细胞表现出一致的电生理和形态特性。这些特性在 t 型之间表现出离散和连续的变化。通过多模态综合分析,我们定义了 28 种具有一致形态、电生理和转录组特性以及稳健互预测性的元类型。我们确定了特定于层的轴突神经支配模式,作为区分不同元类型的特征。这些元类型代表了皮质 GABA 能中间神经元类型的统一定义,为捕获现有知识并在不同模态之间架起未来分析的桥梁提供了一个系统的框架。

相似文献

1
Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells.
Cell. 2020 Nov 12;183(4):935-953.e19. doi: 10.1016/j.cell.2020.09.057.
2
Signature morphoelectric properties of diverse GABAergic interneurons in the human neocortex.
Science. 2023 Oct 13;382(6667):eadf6484. doi: 10.1126/science.adf6484.
3
Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.
Nat Neurosci. 2016 Feb;19(2):335-46. doi: 10.1038/nn.4216. Epub 2016 Jan 4.
5
Early emergence of cortical interneuron diversity in the mouse embryo.
Science. 2018 Apr 6;360(6384):81-85. doi: 10.1126/science.aar6821. Epub 2018 Feb 22.
7
Transcriptomic profile of the subiculum-projecting VIP GABAergic neurons in the mouse CA1 hippocampus.
Brain Struct Funct. 2019 Jul;224(6):2269-2280. doi: 10.1007/s00429-019-01883-z. Epub 2019 May 16.
8
Phenotypic variation of transcriptomic cell types in mouse motor cortex.
Nature. 2021 Oct;598(7879):144-150. doi: 10.1038/s41586-020-2907-3. Epub 2020 Nov 12.
9
Genetic Single Neuron Anatomy Reveals Fine Granularity of Cortical Axo-Axonic Cells.
Cell Rep. 2019 Mar 12;26(11):3145-3159.e5. doi: 10.1016/j.celrep.2019.02.040.

引用本文的文献

1
A Toolkit for Mapping and Modulating Neurotransmission at Single-Cell Resolution.
bioRxiv. 2025 Aug 18:2025.08.18.670838. doi: 10.1101/2025.08.18.670838.
3
Long-lasting, subtype-specific regulation of somatostatin interneurons during sensory learning.
Sci Adv. 2025 Aug 15;11(33):eadt8956. doi: 10.1126/sciadv.adt8956.
4
The coming decade of digital brain research: A vision for neuroscience at the intersection of technology and computing.
Imaging Neurosci (Camb). 2024 Apr 18;2. doi: 10.1162/imag_a_00137. eCollection 2024.
5
The misplaced mouse Pax6 interneuron subclass: A cross-species transcriptomic reassignment.
bioRxiv. 2025 Jul 24:2025.07.23.666342. doi: 10.1101/2025.07.23.666342.
6
A multimodal approach for visualization and identification of electrophysiological cell types .
bioRxiv. 2025 Jul 31:2025.07.24.666654. doi: 10.1101/2025.07.24.666654.
8
Primary auditory thalamus relays directly to cortical layer 1 interneurons.
iScience. 2025 Jun 24;28(8):112652. doi: 10.1016/j.isci.2025.112652. eCollection 2025 Aug 15.
9
Generating brain-wide connectome using synthetic axonal morphologies.
Nat Commun. 2025 Jul 18;16(1):6611. doi: 10.1038/s41467-025-62030-3.
10
Global error signal guides local optimization in mismatch calculation.
bioRxiv. 2025 Jul 10:2025.07.07.663505. doi: 10.1101/2025.07.07.663505.

本文引用的文献

1
A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation.
Cell. 2021 Jun 10;184(12):3222-3241.e26. doi: 10.1016/j.cell.2021.04.021. Epub 2021 May 17.
2
Phenotypic variation of transcriptomic cell types in mouse motor cortex.
Nature. 2021 Oct;598(7879):144-150. doi: 10.1038/s41586-020-2907-3. Epub 2020 Nov 12.
3
Extraction of Distinct Neuronal Cell Types from within a Genetically Continuous Population.
Neuron. 2020 Jul 22;107(2):274-282.e6. doi: 10.1016/j.neuron.2020.04.018. Epub 2020 May 11.
4
The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas.
Cell. 2020 May 14;181(4):936-953.e20. doi: 10.1016/j.cell.2020.04.007. Epub 2020 May 7.
5
Continuous and Discrete Neuron Types of the Adult Murine Striatum.
Neuron. 2020 Feb 19;105(4):688-699.e8. doi: 10.1016/j.neuron.2019.11.004. Epub 2019 Dec 5.
6
The Synaptic Organization of Layer 6 Circuits Reveals Inhibition as a Major Output of a Neocortical Sublamina.
Cell Rep. 2019 Sep 17;28(12):3131-3143.e5. doi: 10.1016/j.celrep.2019.08.048.
7
Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas.
Nat Commun. 2019 Sep 13;10(1):4174. doi: 10.1038/s41467-019-12058-z.
8
Conserved cell types with divergent features in human versus mouse cortex.
Nature. 2019 Sep;573(7772):61-68. doi: 10.1038/s41586-019-1506-7. Epub 2019 Aug 21.
10
The diversity of GABAergic neurons and neural communication elements.
Nat Rev Neurosci. 2019 Sep;20(9):563-572. doi: 10.1038/s41583-019-0195-4. Epub 2019 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验