Suppr超能文献

利用生成对抗网络设计优化的候选药物。

Designing optimized drug candidates with Generative Adversarial Network.

作者信息

Abbasi Maryam, Santos Beatriz P, Pereira Tiago C, Sofia Raul, Monteiro Nelson R C, Simões Carlos J V, Brito Rui M M, Ribeiro Bernardete, Oliveira José L, Arrais Joel P

机构信息

Univ Coimbra, Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, Coimbra, Portugal.

IEETA, Department of Electronics, Telecommunications and Informatics, University of Aveiro, Aveiro, Portugal.

出版信息

J Cheminform. 2022 Jun 26;14(1):40. doi: 10.1186/s13321-022-00623-6.

Abstract

Drug design is an important area of study for pharmaceutical businesses. However, low efficacy, off-target delivery, time consumption, and high cost are challenges and can create barriers that impact this process. Deep Learning models are emerging as a promising solution to perform de novo drug design, i.e., to generate drug-like molecules tailored to specific needs. However, stereochemistry was not explicitly considered in the generated molecules, which is inevitable in targeted-oriented molecules. This paper proposes a framework based on Feedback Generative Adversarial Network (GAN) that includes optimization strategy by incorporating Encoder-Decoder, GAN, and Predictor deep models interconnected with a feedback loop. The Encoder-Decoder converts the string notations of molecules into latent space vectors, effectively creating a new type of molecular representation. At the same time, the GAN can learn and replicate the training data distribution and, therefore, generate new compounds. The feedback loop is designed to incorporate and evaluate the generated molecules according to the multiobjective desired property at every epoch of training to ensure a steady shift of the generated distribution towards the space of the targeted properties. Moreover, to develop a more precise set of molecules, we also incorporate a multiobjective optimization selection technique based on a non-dominated sorting genetic algorithm. The results demonstrate that the proposed framework can generate realistic, novel molecules that span the chemical space. The proposed Encoder-Decoder model correctly reconstructs 99% of the datasets, including stereochemical information. The model's ability to find uncharted regions of the chemical space was successfully shown by optimizing the unbiased GAN to generate molecules with a high binding affinity to the Kappa Opioid and Adenosine [Formula: see text] receptor. Furthermore, the generated compounds exhibit high internal and external diversity levels 0.88 and 0.94, respectively, and uniqueness.

摘要

药物设计是制药企业重要的研究领域。然而,低疗效、脱靶递送、耗时和高成本是挑战,可能会形成影响这一过程的障碍。深度学习模型正成为一种有前景的从头药物设计解决方案,即生成满足特定需求的类药物分子。然而,生成的分子中未明确考虑立体化学,而这在靶向分子中是不可避免的。本文提出了一种基于反馈生成对抗网络(GAN)的框架,该框架通过整合编码器 - 解码器、GAN和预测器深度模型并与反馈回路互连来包含优化策略。编码器 - 解码器将分子的字符串表示转换为潜在空间向量,有效地创建了一种新型的分子表示。同时,GAN可以学习并复制训练数据分布,从而生成新的化合物。反馈回路旨在在训练的每个时期根据多目标期望属性纳入并评估生成的分子,以确保生成分布朝着靶向属性空间稳定转移。此外,为了开发更精确的分子集,我们还纳入了基于非支配排序遗传算法的多目标优化选择技术。结果表明,所提出的框架可以生成跨越化学空间的现实、新颖的分子。所提出的编码器 - 解码器模型能够正确重建99%的数据集,包括立体化学信息。通过优化无偏GAN以生成与κ阿片受体和腺苷[公式:见原文]受体具有高结合亲和力的分子,成功展示了该模型发现化学空间未知区域的能力。此外,生成的化合物分别表现出高的内部和外部多样性水平,分别为0.88和0.94,以及独特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cc0/9233801/ff9fd3e8fb14/13321_2022_623_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验