Suppr超能文献

基于项目反应理论的应激负荷评分

Allostatic load scoring using item response theory.

作者信息

Liu Shelley H, Juster Robert-Paul, Dams-O'Connor Kristen, Spicer Julie

机构信息

Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, United States.

Department of Psychiatry and Addiction, University of Montreal, Canada.

出版信息

Compr Psychoneuroendocrinol. 2020 Dec 17;5:100025. doi: 10.1016/j.cpnec.2020.100025. eCollection 2021 Feb.

Abstract

Allostatic load is commonly operationalized using a sum-score of high-risk biomarkers. However, this method implies that biomarkers contribute equally to allostatic load, as each is given equal weight. Our goal in this methodological paper is to evaluate this, and complementarily, to identify biomarkers that are most informative and least informative for developing an allostatic load index. Item response theory models provide an alternate approach to calculating the allostatic load score, by treating individual biomarkers (e.g. "items") as indicators of a latent allostatic load construct. Item response theory scores account for the data-driven discriminating power of each biomarker, and an individual's pattern of biomarker responses. To demonstrate feasibility of this approach, we used data from the 2015-2016 National Health Examination and Nutrition Survey (NHANES;  ​= ​3751), with twelve allostatic load biomarkers representing immune response, metabolic function and cardiovascular health. Item response theory models revealed that body-mass-index and C-reactive protein were the most informative biomarkers for allostatic load. Both higher allostatic load sum-score and allostatic load item response theory score were associated with lower socio-economic status (p ​= ​0.008; p<0.001, respectively). Further, both formulations of allostatic load were positively associated with a nine-item depression screener (p<0.001 for both), but only the item response theory score was also positively associated with the impact of depressive symptoms on daily life (p ​= ​0.045). Item response theory scores may be more finely tuned to tease out effects, compared to sum-scores, and also provide more flexibility when there are missing biomarker measurements. Supplemental R code for our approach are included.

摘要

负荷应激通常通过高风险生物标志物的总分来衡量。然而,这种方法意味着每个生物标志物对负荷应激的贡献是相等的,因为它们被赋予了同等的权重。在这篇方法学论文中,我们的目标是评估这一点,并作为补充,识别出对于构建负荷应激指数最具信息量和最不具信息量的生物标志物。项目反应理论模型提供了一种计算负荷应激分数的替代方法,即将单个生物标志物(如“项目”)视为潜在的负荷应激结构的指标。项目反应理论分数考虑了每个生物标志物的数据驱动判别能力以及个体的生物标志物反应模式。为了证明这种方法的可行性,我们使用了2015 - 2016年全国健康检查与营养调查(NHANES;n = 3751)的数据,其中有12种代表免疫反应、代谢功能和心血管健康的负荷应激生物标志物。项目反应理论模型显示,体重指数和C反应蛋白是负荷应激最具信息量的生物标志物。较高的负荷应激总分和负荷应激项目反应理论分数均与较低的社会经济地位相关(分别为p = 0.008;p<0.001)。此外,两种负荷应激指标均与一个九项抑郁筛查量表呈正相关(两者p<0.001),但只有项目反应理论分数也与抑郁症状对日常生活的影响呈正相关(p = 0.045)。与总分相比,项目反应理论分数可能能更精细地梳理出相关效应,并且在存在生物标志物测量缺失时也提供了更大的灵活性。我们还提供了该方法的补充R代码。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65c1/9216382/a14b10fc4f51/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验