Liu Shelley H, Chen Yitong, Kuiper Jordan R, Ho Emily, Buckley Jessie P, Feuerstahler Leah
Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, DC, USA.
Stat Biosci. 2024 Jul;16(2):482-502. doi: 10.1007/s12561-023-09410-9. Epub 2024 Jan 22.
Environmental mixtures, which reflect joint exposure to multiple environmental agents, are a major focus of environmental health and risk assessment research. Advancements in latent variable modeling and psychometrics can be used to address contemporary questions in environmental mixtures research. In particular, latent variable models can quantify an individual's cumulative exposure burden to mixtures and identify hidden subpopulations with distinct exposure patterns. Here, we first provide a review of measurement approaches from the psychometrics field, including structural equation modeling and latent class/profile analysis, and discuss their prior environmental epidemiologic applications. Then, we discuss additional, underutilized opportunities to leverage the strengths of psychometric approaches. This includes using item response theory to create a common scale for comparing exposure burden scores across studies; facilitating data harmonization through the use of anchors. We also discuss studying fairness or appropriateness of measurement models to quantify exposure burden across diverse populations, through the use of mixture item response theory and through evaluation of measurement invariance and differential item functioning. Multi-dimensional models to quantify correlated exposure burden sub-scores, and methods to adjust for imprecision of chemical exposure data, are also discussed. We show that there is great potential to address pressing environmental epidemiology and exposure science questions using latent variable methods.
环境混合物反映了对多种环境因素的联合暴露,是环境卫生与风险评估研究的主要关注点。潜在变量建模和心理测量学的进展可用于解决环境混合物研究中的当代问题。特别是,潜在变量模型可以量化个体对混合物的累积暴露负担,并识别具有不同暴露模式的隐藏亚群。在此,我们首先回顾心理测量学领域的测量方法,包括结构方程建模和潜在类别/概况分析,并讨论它们先前在环境流行病学中的应用。然后,我们讨论利用心理测量方法优势的其他未充分利用的机会。这包括使用项目反应理论创建一个通用量表,以比较不同研究中的暴露负担得分;通过使用锚点促进数据协调。我们还讨论了通过使用混合项目反应理论以及通过评估测量不变性和项目功能差异来研究测量模型的公平性或适当性,以量化不同人群的暴露负担。还讨论了用于量化相关暴露负担子分数的多维模型,以及调整化学暴露数据不精确性的方法。我们表明,使用潜在变量方法解决紧迫的环境流行病学和暴露科学问题具有巨大潜力。