Strait Justin, Chkrebtii Oksana, Kurtek Sebastian
Department of Statistics, University of Georgia.
Department of Statistics, The Ohio State University.
Commun Stat Simul Comput. 2022;51(4):1415-1435. doi: 10.1080/03610918.2019.1670843. Epub 2019 Sep 30.
In the field of shape analysis, landmarks are defined as a low-dimensional, representative set of important features of an object's shape that can be used to identify regions of interest along its outline. An important problem is to infer the number and arrangement of landmarks, given a set of shapes drawn from a population. One proposed approach defines a posterior distribution over landmark locations by associating each landmark configuration with a linear reconstruction of the shape. In practice, sampling from the resulting posterior density is challenging using standard Markov chain Monte Carlo (MCMC) methods because multiple configurations of landmarks can describe a complex shape similarly well, manifesting in a multi-modal posterior with well-separated modes. Standard MCMC methods traverse multi-modal posteriors poorly and, even when multiple modes are identified, the relative amount of time spent in each one can be misleading. We apply new advances in the parallel tempering literature to the problem of landmark detection, providing guidance on implementation generalized to other applications within shape analysis. Proposal adaptation is used during burn-in to ensure efficient traversal of the parameter space while maintaining computational efficiency. We demonstrate this algorithm on simulated data and common shapes obtained from computer vision scenes.
在形状分析领域,地标被定义为物体形状的一组低维、具有代表性的重要特征,可用于沿着其轮廓识别感兴趣的区域。一个重要的问题是,给定从总体中抽取的一组形状,推断地标点的数量和排列。一种提出的方法是通过将每个地标配置与形状的线性重建相关联,来定义地标位置上的后验分布。在实践中,使用标准的马尔可夫链蒙特卡罗(MCMC)方法从所得的后验密度中采样具有挑战性,因为多个地标配置可以同样好地描述复杂形状,这表现为具有明显分离模式的多峰后验。标准的MCMC方法在遍历多峰后验时效果不佳,而且即使识别出多个模式,在每个模式上花费的相对时间量也可能产生误导。我们将并行回火文献中的新进展应用于地标检测问题,为推广到形状分析中的其他应用的实现提供指导。在预烧期间使用提议自适应,以确保在保持计算效率的同时有效地遍历参数空间。我们在从计算机视觉场景获得的模拟数据和常见形状上演示了该算法。