Suppr超能文献

新型冠状病毒肺炎感染率曲线的形状受限估计与空间聚类

Shape-restricted estimation and spatial clustering of COVID-19 infection rate curves.

作者信息

Matuk James, Guo Xiaohan

机构信息

Duke University, 214 Old Chemistry, Durham, NC 27708, USA.

The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA.

出版信息

Spat Stat. 2022 Jun;49:100546. doi: 10.1016/j.spasta.2021.100546. Epub 2021 Oct 22.

Abstract

The study of regional COVID-19 daily reported cases is used to understand pattern of spread and disease progression over time. These data are challenging to model due to noise that is present, which arises from failures in reporting, false positive tests, etc., and the spatial dependence between regions. In this work, we extend a recently developed Bayesian modeling framework for inference of functional data to jointly estimate and cluster daily reported cases data from US states, while accounting for spatial dependence between US states. Shape-restriction allows us to directly infer the number of extrema of a smooth infection rate curve that underlies noisy data. Other parameters in the model account for the relative timing of extrema, and the magnitude and severity of infection rates. We incorporate mobility behavior of each US state's population into an informative prior model to account for the spatial dependence between US states. Our model corroborates past work that shows that different US states have indeed experienced COVID-19 differently, but that there are regional patterns within the US. The modeling results can be used to assess severity of infection in individual US states and trends of neighboring US states to aid pandemic planning. Retrospectively, this model can be used to see which factors (governmental, behavioral, etc.) are associated with the varying shapes of infection rate curves, which is left as future work.

摘要

对区域新冠疫情每日报告病例的研究,用于了解疫情传播模式以及随时间推移的疾病进展情况。由于存在报告失误、检测假阳性等导致的噪声,以及各地区之间的空间依赖性,这些数据难以建模。在这项工作中,我们扩展了一个最近开发的用于函数数据推断的贝叶斯建模框架,以联合估计和聚类来自美国各州的每日报告病例数据,同时考虑美国各州之间的空间依赖性。形状限制使我们能够直接推断出有噪声数据背后的平滑感染率曲线的极值数量。模型中的其他参数考虑了极值的相对时间、感染率的大小和严重程度。我们将美国各州人口的流动行为纳入一个信息丰富的先验模型,以考虑美国各州之间的空间依赖性。我们的模型证实了过去的研究结果,即美国不同州确实经历了不同的新冠疫情,但美国境内存在区域模式。建模结果可用于评估美国各州的感染严重程度以及相邻州的趋势,以协助大流行规划。回顾性地看,该模型可用于了解哪些因素(政府因素、行为因素等)与感染率曲线的不同形状相关,这将留作未来的工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8637/8532378/a797c2109800/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验