Suppr超能文献

基于人工神经网络评估资源错配与全要素生产率的关系。

Assessing the Relationship between Resource Misallocation and Total Factor Productivity Based on Artificial Neural Network.

机构信息

Sunwah International Business School, Liaoning University, Shenyang 110136, China.

出版信息

Comput Intell Neurosci. 2022 Jun 17;2022:5148879. doi: 10.1155/2022/5148879. eCollection 2022.

Abstract

For interpretation of China's economy, total factor productivity is considered as one of the crucial aspects which is generally dependent on innovation in technologies especially those driven by both scientific research and efficiency of the methodology or process which is dedicated for the allocation of numerous resources available, among enterprises. It is important to note that various factors, which are either directly or indirectly involved, to cause misallocation of the resources to the enterprises, are overly complex. Therefore, an affective mechanism is needed to be realized which is capable of resolving these issues with the available resources and infrastructures. In this paper, we have focused on the construction or development of an artificial neutral network (ANN) based evaluation model to study the impact of resource misallocation on total factor productivity. Likewise, we have conducted a counterfactual experiment, i.e., simulation only, to thoroughly examine the relationship between two very important factors, that is, (i) resource misallocation and (ii) total factor productivity. To do this, we are aiming at investigating the growth potential of total factor productivity when there is no resource misallocation. After comparing 8 industries in different regions, we conclude that the contribution of capital and labor distortion to total factor productivity is the highest in the eastern region of China with -0.036 and 0.065, respectively, followed by the northeast, central, and western regions. In the experiment, China's total factor productivity growth potential could reach 1.1296, if there is no resource misallocation. The results in this paper would shed some lights on the paths to improve resource allocation efficiency and total factor productivity.

摘要

对于中国经济的解读,全要素生产率被认为是一个关键方面,它通常取决于技术创新,特别是那些由科研和资源分配方法或流程的效率所驱动的创新,这些方法或流程致力于在企业中分配大量可用资源。需要注意的是,导致资源向企业错误配置的各种因素,无论是直接的还是间接的,都非常复杂。因此,需要实现一种有效的机制,利用现有资源和基础设施来解决这些问题。在本文中,我们专注于构建或开发基于人工神经网络(ANN)的评价模型,以研究资源错配对全要素生产率的影响。同样,我们进行了反事实实验,即仅进行模拟,以彻底研究两个非常重要的因素之间的关系,即(i)资源错配和(ii)全要素生产率。为此,我们旨在研究在没有资源错配的情况下全要素生产率的增长潜力。在对不同地区的 8 个行业进行比较后,我们得出结论,资本和劳动力扭曲对全要素生产率的贡献在中国东部最高,分别为-0.036 和 0.065,其次是东北地区、中部地区和西部地区。在实验中,如果没有资源错配,中国的全要素生产率增长潜力可达 1.1296。本文的结果将为提高资源配置效率和全要素生产率指明道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c565/9232355/185ad9e59067/CIN2022-5148879.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验