Ahmad Katya, Rizzi Andrea, Capelli Riccardo, Mandelli Davide, Lyu Wenping, Carloni Paolo
Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany.
Atomistic Simulations, Istituto Italiano di Tecnologia, Genova, Italy.
Front Mol Biosci. 2022 Jun 8;9:899805. doi: 10.3389/fmolb.2022.899805. eCollection 2022.
The dissociation rate ( ) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of . Next, we discuss the impact of the potential energy function models on the accuracy of calculated values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
与配体从蛋白质上解离事件相关的解离速率( )是药物设计中至关重要的一个参数。在此,我们回顾了用于预测 的分子模拟方法的近期主要进展。接下来,我们讨论势能函数模型对计算得到的 值准确性的影响。最后,我们从高性能计算和机器学习的角度提供了一些观点,这可能有助于改进此类预测。