Suppr超能文献

基于机器学习的蛋白质-配体解吸动力学预测的基准模型。

Baseline Model for Predicting Protein-Ligand Unbinding Kinetics through Machine Learning.

机构信息

Center for Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.

Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, Glasgow G4 0NG, U.K.

出版信息

J Chem Inf Model. 2020 Dec 28;60(12):5946-5956. doi: 10.1021/acs.jcim.0c00450. Epub 2020 Nov 13.

Abstract

Derivation of structure-kinetics relationships can help rational design and development of new small-molecule drug candidates with desired residence times. Efforts are now being directed toward the development of efficient computational methods. Currently, there is a lack of solid, high-throughput binding kinetics prediction approaches on bigger datasets. We present a prediction method for binding kinetics based on the machine learning analysis of protein-ligand structural features, which can serve as a baseline for more sophisticated methods utilizing molecular dynamics (MD). We showed that the random forest algorithm is capable of learning the protein binding site secondary structure and backbone/side-chain features to predict the binding kinetics of protein-ligand complexes but still with inferior performance to that of MD-based descriptor analysis. MD simulations had been applied to a limited number of targets and a series of ligands in terms of kinetics analysis, and we believe that the developed approach may guide new studies. The method was trained on a newly curated database of 501 protein-ligand unbinding rate constants, which can also be used for testing and training the binding kinetics prediction models.

摘要

结构-动力学关系的推导有助于合理设计和开发具有理想停留时间的新小分子药物候选物。目前正在努力开发高效的计算方法。目前,在更大的数据集上缺乏可靠的高通量结合动力学预测方法。我们提出了一种基于蛋白质-配体结构特征的机器学习分析的结合动力学预测方法,可作为利用分子动力学 (MD) 的更复杂方法的基线。我们表明,随机森林算法能够学习蛋白质结合位点的二级结构和骨架/侧链特征,以预测蛋白质-配体复合物的结合动力学,但性能仍逊于基于 MD 的描述符分析。MD 模拟已应用于动力学分析的少数目标和一系列配体,我们相信开发的方法可以指导新的研究。该方法是在一个新的 501 个蛋白质-配体解吸速率常数的编目数据库上进行训练的,该数据库也可用于测试和训练结合动力学预测模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验