Suppr超能文献

研究模糊逻辑在图像引导放射治疗中的应用效果。

Investigation the Efficacy of Fuzzy Logic Implementation at Image-Guided Radiotherapy.

作者信息

Torshabi Ahmad Esmaili

机构信息

Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran.

出版信息

J Med Signals Sens. 2022 May 12;12(2):163-170. doi: 10.4103/jmss.JMSS_76_20. eCollection 2022 Apr-Jun.

Abstract

At image-guided radiotherapy, technique, different imaging, and monitoring systems are utilized for (i) organs border detection and tumor delineation during the treatment planning process and (ii) patient setup and tumor localization at pretreatment step and (iii) real-time tumor motion tracking for dynamic thorax tumors during the treatment. In this study, the effect of fuzzy logic is quantitatively investigated at different steps of image-guided radiotherapy. Fuzzy logic-based models and algorithms have been implemented at three steps, and the obtained results are compared with commonly available strategies. Required data are (i) real patients treated with Synchrony Cyberknife system at Georgetown University Hospital for real-time tumor motion prediction, (ii) computed tomography images taken from real patients for geometrical setup, and also (iii) tomography images of an anthropomorphic phantom for tumor delineation process. In real-time tumor tracking, the targeting error averages of the fuzzy correlation model in comparison with the Cyberknife modeler are 4.57 mm and 8.97 mm, respectively, for a given patient that shows remarkable error reduction. In the case of patient geometrical setup, the fuzzy logic-based algorithm has better influence in comparing with the artificial neural network, while the setup error averages is reduced from 1.47 to 0.4432 mm using the fuzzy logic-based method, for a given patient.Finally, the obtained results show that the fuzzy logic based image processing algorithm exhibits much better performance for edge detection compared to four conventional operators. This study is an effort to show that fuzzy logic based algorithms are also highly applicable at image-guided radiotherapy as one of the important treatment modalities for tumor delineation, patient setup error reduction, and intrafractional motion error compensation due to their inherent properties.

摘要

在图像引导放射治疗中,不同的成像和监测系统被用于:(i)在治疗计划过程中进行器官边界检测和肿瘤轮廓勾画;(ii)在治疗前步骤中进行患者摆位和肿瘤定位;(iii)在治疗过程中对动态胸部肿瘤进行实时肿瘤运动跟踪。在本研究中,定量研究了模糊逻辑在图像引导放射治疗不同步骤中的效果。基于模糊逻辑的模型和算法已在三个步骤中实现,并将所得结果与常用策略进行比较。所需数据包括:(i)在乔治敦大学医院使用同步射波刀系统治疗的真实患者数据,用于实时肿瘤运动预测;(ii)从真实患者获取的计算机断层扫描图像,用于几何摆位;以及(iii)用于肿瘤轮廓勾画过程的人体模型断层扫描图像。在实时肿瘤跟踪中,对于给定患者,与射波刀建模器相比,模糊相关模型的靶向误差平均值分别为4.57毫米和8.97毫米,显示出显著的误差降低。在患者几何摆位方面,与人工神经网络相比,基于模糊逻辑的算法具有更好的效果,对于给定患者,使用基于模糊逻辑的方法,摆位误差平均值从1.47毫米降低到0.4432毫米。最后,所得结果表明,与四种传统算子相比,基于模糊逻辑的图像处理算法在边缘检测方面表现出更好的性能。本研究旨在表明,基于模糊逻辑的算法因其固有特性,在图像引导放射治疗中作为肿瘤轮廓勾画、减少患者摆位误差和补偿分次内运动误差的重要治疗方式之一也具有高度适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc06/9215832/5a3e568a7c3a/JMSS-12-163-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验