Suppr超能文献

卷积神经网络中的不确定性处理。

Uncertainty handling in convolutional neural networks.

作者信息

Rashno Elyas, Akbari Ahmad, Nasersharif Babak

机构信息

Department of Computer Engineering, Iran University of Science and Technology, Narmak, Tehran, 1684613114 Iran.

Department of Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran.

出版信息

Neural Comput Appl. 2022;34(19):16753-16769. doi: 10.1007/s00521-022-07313-2. Epub 2022 Jun 18.

Abstract

The performance of convolutional neural networks is degraded by noisy data, especially in the test phase. To address this challenge, a new convolutional neural network structure with data indeterminacy handling in the neutrosophic (NS) domain, named as Neutrosophic Convolutional Neural Networks, is proposed for image classification. For this task, images are firstly mapped from the pixel domain to three sets true (T), indeterminacy (I) and false (F) in NS domain by the proposed method. Then, NCNN with two parallel paths, one with the input of T and another with I, is constructed followed by an appropriate combination of paths to generate the final output. Here, two paths are trained simultaneously, and neural network weights are updated using back propagation algorithm. The effectiveness of NCNN to handle noisy data is analyzed mathematically in terms of the weights update rule. Proposed two paths NS idea is applied to two basic models: CNN and VGG-Net to construct NCNN and NVGG-Net, respectively. The proposed method has been evaluated on MNIST, CIFAR-10 and CIFAR-100 datasets contaminated with 20 levels of Gaussian noise. Results show that two-path NCNN outperforms CNN by 5.11% and 2.21% in 5 pairs (training, test) with different levels of noise on MNIST and CIFAR-10 datasets, respectively. Finally, NVGG-Net increases the accuracy by 3.09% and 2.57% compared to VGG-Net on CIFAR-10 and CIFAR-100 datasets, respectively.

摘要

卷积神经网络的性能会因噪声数据而下降,尤其是在测试阶段。为应对这一挑战,本文提出了一种新的卷积神经网络结构——中智卷积神经网络(Neutrosophic Convolutional Neural Networks),用于在中智(NS)域中处理数据不确定性以进行图像分类。对于此任务,首先通过所提出的方法将图像从像素域映射到NS域中的真(T)、不确定(I)和假(F)三个集合。然后,构建具有两条并行路径的NCNN,一条路径以T作为输入,另一条以I作为输入,随后对路径进行适当组合以生成最终输出。在此,两条路径同时进行训练,并使用反向传播算法更新神经网络权重。根据权重更新规则,从数学角度分析了NCNN处理噪声数据的有效性。所提出的双路径NS思想应用于两个基本模型:CNN和VGG-Net,分别构建了NCNN和NVGG-Net。所提出的方法在受20种高斯噪声污染的MNIST、CIFAR-10和CIFAR-100数据集上进行了评估。结果表明,在MNIST和CIFAR-10数据集上,双路径NCNN在5对(训练、测试)不同噪声水平下分别比CNN高出5.11%和2.21%。最后,在CIFAR-10和CIFAR-100数据集上,NVGG-Net分别比VGG-Net的准确率提高了3.09%和2.57%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验