Suppr超能文献

改进的卷积小波神经网络研究。

Research on improved convolutional wavelet neural network.

机构信息

Information College, Capital University of Economics and Business, Beijing, 100070, China.

Information Department, Beijing University of Technology, Beijing, 100124, China.

出版信息

Sci Rep. 2021 Sep 9;11(1):17941. doi: 10.1038/s41598-021-97195-6.

Abstract

Artificial neural networks (ANN) which include deep learning neural networks (DNN) have problems such as the local minimal problem of Back propagation neural network (BPNN), the unstable problem of Radial basis function neural network (RBFNN) and the limited maximum precision problem of Convolutional neural network (CNN). Performance (training speed, precision, etc.) of BPNN, RBFNN and CNN are expected to be improved. Main works are as follows: Firstly, based on existing BPNN and RBFNN, Wavelet neural network (WNN) is implemented in order to get better performance for further improving CNN. WNN adopts the network structure of BPNN in order to get faster training speed. WNN adopts the wavelet function as an activation function, whose form is similar to the radial basis function of RBFNN, in order to solve the local minimum problem. Secondly, WNN-based Convolutional wavelet neural network (CWNN) method is proposed, in which the fully connected layers (FCL) of CNN is replaced by WNN. Thirdly, comparative simulations based on MNIST and CIFAR-10 datasets among the discussed methods of BPNN, RBFNN, CNN and CWNN are implemented and analyzed. Fourthly, the wavelet-based Convolutional Neural Network (WCNN) is proposed, where the wavelet transformation is adopted as the activation function in Convolutional Pool Neural Network (CPNN) of CNN. Fifthly, simulations based on CWNN are implemented and analyzed on the MNIST dataset. Effects are as follows: Firstly, WNN can solve the problems of BPNN and RBFNN and have better performance. Secondly, the proposed CWNN can reduce the mean square error and the error rate of CNN, which means CWNN has better maximum precision than CNN. Thirdly, the proposed WCNN can reduce the mean square error and the error rate of CWNN, which means WCNN has better maximum precision than CWNN.

摘要

人工神经网络(ANN)包括深度学习神经网络(DNN),存在反向传播神经网络(BPNN)的局部极小问题、径向基函数神经网络(RBFNN)的不稳定问题和卷积神经网络(CNN)的最大精度限制问题等。BPNN、RBFNN 和 CNN 的性能(训练速度、精度等)有望得到提高。主要工作如下:首先,在现有的 BPNN 和 RBFNN 的基础上,实现了小波神经网络(WNN),以便进一步提高 CNN 的性能。WNN 采用 BPNN 的网络结构,以获得更快的训练速度。WNN 采用小波函数作为激活函数,其形式类似于 RBFNN 的径向基函数,以解决局部极小问题。其次,提出了基于 WNN 的卷积小波神经网络(CWNN)方法,其中 CNN 的全连接层(FCL)被 WNN 取代。第三,基于 MNIST 和 CIFAR-10 数据集,对所讨论的 BPNN、RBFNN、CNN 和 CWNN 方法进行了对比仿真和分析。第四,提出了基于小波的卷积神经网络(WCNN),其中在 CNN 的卷积池神经网络(CPNN)中采用小波变换作为激活函数。第五,在 MNIST 数据集上对基于 CWNN 的仿真进行了分析。结果表明:首先,WNN 可以解决 BPNN 和 RBFNN 的问题,具有更好的性能。其次,所提出的 CWNN 可以降低 CNN 的均方误差和误差率,这意味着 CWNN 具有比 CNN 更高的最大精度。第三,所提出的 WCNN 可以降低 CWNN 的均方误差和误差率,这意味着 WCNN 具有比 CWNN 更高的最大精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7816/8429473/7fa58174dc94/41598_2021_97195_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验