Suppr超能文献

预测卵圆孔未闭相关卒中复发的列线图

A Nomogram for Predicting Patent Foramen Ovale-Related Stroke Recurrence.

作者信息

Wu Zhuonan, Zhang Chuanjing, Liu Nan, Xie Wenqing, Yang Jinjin, Guo Hangyuan, Chi Jufang

机构信息

Shaoxing University School of Medicine, Shaoxing, China.

Ningbo University School of Medicine, Ningbo, China.

出版信息

Front Neurol. 2022 Jun 9;13:903789. doi: 10.3389/fneur.2022.903789. eCollection 2022.

Abstract

BACKGROUND

The high prevalence of patent foramen ovale (PFO) in cryptogenic stroke suggested a stroke-causing role for PFO. As risk factors for recurrence of such stroke are not recognized, clinicians cannot sufficiently identify, treat, and follow-up high-risk patients. Therefore, this study aimed to establish a prediction model for PFO-related stroke recurrence.

METHODS

This study included 392 patients with PFO-related stroke in a training set and 164 patients with PFO-related stroke in an independent validation set. In the training set, independent risk factors for recurrence identified using forward stepwise Cox regression were included in nomogram 1, and those identified using least absolute shrinkage and selection operator(LASSO)regression were included in nomogram 2. Nomogram performance and discrimination were assessed using the concordance index (C-index), area under the curve (AUC), calibration curve, and decision curve analyses (DCA). The results were also validated in the validation set.

RESULTS

Nomogram 1 was based on homocysteine (Hcy), high-sensitivity C-reactive protein (hsCRP), and albumin (ALB), and nomogram 2 was based on age, diabetes, hypertension, right-to-left shunt, ALB, prealbumin, hsCRP, and Hcy. The C-index of nomogram 1 was 0.861, which was not significantly different from that of nomogram 2 (0.893). The 2- and 5-year AUCs of nomogram 1 were 0.863 and 0.777, respectively. In the validation set, nomogram 1 still had good discrimination (C-index, 0.862; 2-year AUC, 0.839; 5-year AUC, 0.990). The calibration curve showed good homogeneity between the prediction by nomogram 1 and the actual observation. DCA demonstrated that nomogram 1 was clinically useful. Moreover, patients were successfully divided into two distinct risk groups (low and high risk) for recurrence rate by nomogram 1.

CONCLUSIONS

Nomogram 1, based on Hcy, hsCRP, and ALB levels, provided a more clinically realistic prognostic prediction for patients with PFO-related stroke. This model could help patients with PFO-related stroke to facilitate personalized prognostic evaluations.

摘要

背景

卵圆孔未闭(PFO)在不明原因卒中患者中高发生率提示其在卒中发病中的作用。由于此类卒中复发的危险因素尚未明确,临床医生无法充分识别、治疗及随访高危患者。因此,本研究旨在建立PFO相关性卒中复发的预测模型。

方法

本研究纳入392例PFO相关性卒中患者作为训练集,164例PFO相关性卒中患者作为独立验证集。在训练集中,将采用向前逐步Cox回归确定的复发独立危险因素纳入列线图1,将采用最小绝对收缩和选择算子(LASSO)回归确定的危险因素纳入列线图2。采用一致性指数(C指数)、曲线下面积(AUC)、校准曲线及决策曲线分析(DCA)评估列线图的性能和辨别力。结果也在验证集中进行了验证。

结果

列线图1基于同型半胱氨酸(Hcy)、高敏C反应蛋白(hsCRP)和白蛋白(ALB)构建,列线图2基于年龄、糖尿病、高血压、右向左分流、ALB、前白蛋白、hsCRP和Hcy构建。列线图1的C指数为0.861,与列线图2(0.893)无显著差异。列线图1的2年和5年AUC分别为0.863和0.777。在验证集中,列线图1仍具有良好的辨别力(C指数为0.862;2年AUC为0.839;5年AUC为0.990)。校准曲线显示列线图1的预测与实际观察之间具有良好的一致性。DCA表明列线图1具有临床实用性。此外,通过列线图1可成功将患者分为复发率不同的两个风险组(低风险和高风险)。

结论

基于Hcy、hsCRP和ALB水平的列线图1为PFO相关性卒中患者提供了更符合临床实际的预后预测。该模型有助于PFO相关性卒中患者进行个性化预后评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e6b/9218274/cfcd2c6b1a7e/fneur-13-903789-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验