Suppr超能文献

聚类二元数据组内相关系数的保守置信区间。

Conservative confidence intervals for the intraclass correlation coefficient for clustered binary data.

作者信息

Shan Guogen

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV, USA.

出版信息

J Appl Stat. 2021 Apr 2;49(10):2535-2549. doi: 10.1080/02664763.2021.1910939. eCollection 2022.

Abstract

Asymptotic approaches are traditionally used to calculate confidence intervals for intraclass correlation coefficient in a clustered binary study. When sample size is small to medium, or correlation or response rate is near the boundary, asymptotic intervals often do not have satisfactory performance with regard to coverage. We propose using the importance sampling method to construct the profile confidence limits for the intraclass correlation coefficient. Importance sampling is a simulation based approach to reduce the variance of the estimated parameter. Four existing asymptotic limits are used as statistical quantities for sample space ordering in the importance sampling method. Simulation studies are performed to evaluate the performance of the proposed accurate intervals with regard to coverage and interval width. Simulation results indicate that the accurate intervals based on the asymptotic limits by Fleiss and Cuzick generally have shorter width than others in many cases, while the accurate intervals based on Zou and Donner asymptotic limits outperform others when correlation and response rate are close to their boundaries.

摘要

在聚类二元研究中,传统上使用渐近方法来计算组内相关系数的置信区间。当样本量为小到中等,或者相关性或响应率接近边界时,渐近区间在覆盖率方面通常没有令人满意的表现。我们建议使用重要性抽样方法来构建组内相关系数的轮廓置信限。重要性抽样是一种基于模拟的方法,用于减少估计参数的方差。在重要性抽样方法中,四个现有的渐近限用作样本空间排序的统计量。进行模拟研究以评估所提出的精确区间在覆盖率和区间宽度方面的性能。模拟结果表明,在许多情况下,基于Fleiss和Cuzick渐近限的精确区间通常比其他区间宽度更短,而当相关性和响应率接近其边界时,基于Zou和Donner渐近限的精确区间优于其他区间。

相似文献

1
Conservative confidence intervals for the intraclass correlation coefficient for clustered binary data.
J Appl Stat. 2021 Apr 2;49(10):2535-2549. doi: 10.1080/02664763.2021.1910939. eCollection 2022.
2
Accurate confidence intervals for proportion in studies with clustered binary outcome.
Stat Methods Med Res. 2020 Oct;29(10):3006-3018. doi: 10.1177/0962280220913971. Epub 2020 Apr 3.
4
Confidence interval estimation of the intraclass correlation coefficient for binary outcome data.
Biometrics. 2004 Sep;60(3):807-11. doi: 10.1111/j.0006-341X.2004.00232.x.
5
6
Confidence intervals for the common intraclass correlation in the analysis of clustered binary responses.
J Biopharm Stat. 2018;28(4):682-697. doi: 10.1080/10543406.2017.1377727. Epub 2017 Oct 30.
7
A novel confidence interval for a single proportion in the presence of clustered binary outcome data.
Stat Methods Med Res. 2020 Jan;29(1):111-121. doi: 10.1177/0962280218823231. Epub 2019 Jan 23.
8
Accurate confidence intervals for risk difference in meta-analysis with rare events.
BMC Med Res Methodol. 2020 Apr 30;20(1):98. doi: 10.1186/s12874-020-00954-8.
9
Exact one-sided confidence limits for Cohen's kappa as a measurement of agreement.
Stat Methods Med Res. 2017 Apr;26(2):615-632. doi: 10.1177/0962280214552881. Epub 2014 Oct 6.
10
Higher-moment approaches to approximate interval estimation for a certain intraclass correlation coefficient.
Stat Med. 1999 Aug 15;18(15):2051-61. doi: 10.1002/(sici)1097-0258(19990815)18:15<2051::aid-sim162>3.0.co;2-p.

引用本文的文献

1
Response adaptive randomization design for a two-stage study with binary response.
J Biopharm Stat. 2023 Sep 3;33(5):575-585. doi: 10.1080/10543406.2023.2170399. Epub 2023 Feb 3.
2
Monte Carlo cross-validation for a study with binary outcome and limited sample size.
BMC Med Inform Decis Mak. 2022 Oct 17;22(1):270. doi: 10.1186/s12911-022-02016-z.

本文引用的文献

1
Partial correlation coefficient for a study with repeated measurements.
Stat Biopharm Res. 2021;13(4):448-454. doi: 10.1080/19466315.2020.1784780. Epub 2020 Jul 20.
2
Machine learning methods to predict amyloid positivity using domain scores from cognitive tests.
Sci Rep. 2021 Mar 1;11(1):4822. doi: 10.1038/s41598-021-83911-9.
3
Optimal two-stage designs based on restricted mean survival time for a single-arm study.
Contemp Clin Trials Commun. 2021 Jan 23;21:100732. doi: 10.1016/j.conctc.2021.100732. eCollection 2021 Mar.
4
Advanced statistical methods and designs for clinical trials for COVID-19.
Int J Antimicrob Agents. 2021 Jan;57(1):106167. doi: 10.1016/j.ijantimicag.2020.106167.
5
Accurate confidence intervals for proportion in studies with clustered binary outcome.
Stat Methods Med Res. 2020 Oct;29(10):3006-3018. doi: 10.1177/0962280220913971. Epub 2020 Apr 3.
6
Two-stage optimal designs with survival endpoint when the follow-up time is restricted.
BMC Med Res Methodol. 2019 Apr 3;19(1):74. doi: 10.1186/s12874-019-0696-x.
7
R package to estimate intracluster correlation coefficient with confidence interval for binary data.
Comput Methods Programs Biomed. 2018 Mar;155:85-92. doi: 10.1016/j.cmpb.2017.10.023. Epub 2017 Oct 31.
8
Fisher's exact approach for post hoc analysis of a chi-squared test.
PLoS One. 2017 Dec 20;12(12):e0188709. doi: 10.1371/journal.pone.0188709. eCollection 2017.
9
Exact p-values for Simon's two-stage designs in clinical trials.
Stat Biosci. 2016;8(2):351-357. doi: 10.1007/s12561-016-9152-1. Epub 2016 Jun 16.
10
Exact confidence limits for the response rate in two-stage designs with over- or under-enrollment in the second stage.
Stat Methods Med Res. 2018 Apr;27(4):1045-1055. doi: 10.1177/0962280216650918. Epub 2016 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验