Suppr超能文献

利用认知测试的领域评分进行机器学习预测淀粉样蛋白阳性。

Machine learning methods to predict amyloid positivity using domain scores from cognitive tests.

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.

Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W. Bonneville Avenue, Las Vegas, NV, 89106, USA.

出版信息

Sci Rep. 2021 Mar 1;11(1):4822. doi: 10.1038/s41598-021-83911-9.

Abstract

Amyloid-[Formula: see text] (A[Formula: see text]) is the target in many clinical trials for Alzheimer's disease (AD). Preclinical AD patients are heterogeneous with regards to different backgrounds and diagnosis. Accurately predicting A[Formula: see text] status of participants by using machine learning (ML) models based on easily accessible data, could improve the effectiveness of AD clinical trials. We will develop optimal ML models for each subpopulation stratified by sex and disease stages using sub scores from screening neurological tests. Data from the AD Neuroimaging Initiative (ADNI) were used to build the ML models, for three groups: individuals with significant memory concern, early mild cognitive impairment (MCI), and late MCI. Data were further separated into 6 groups by disease stage (3 levels) and sex (2 categories). The outcome was defined as the A[Formula: see text] status confirmed by the PET imaging, and the features include demographic data, newly identified risk factors, screening tests, and the domain scores from screening tests. Monte Carlo simulation studies were used together with k-fold cross-validation technique to compute model performance metric. We also develop a new feature selection method based on the stochastic ordering to avoiding searching all possible combinations of features. Accuracy of the identified optimal model for SMC male was over 90% by using domain scores, and accuracy for LMCI female was above 86%. Domain scores can improve the ML model prediction as compared to the total scores. Accurate ML prediction models can identify the proper population for AD clinical trials.

摘要

淀粉样蛋白-[公式:见正文](A[公式:见正文])是许多阿尔茨海默病(AD)临床试验的目标。临床前 AD 患者在不同背景和诊断方面存在异质性。通过使用基于易于获取的数据的机器学习(ML)模型准确预测参与者的 A[公式:见正文]状态,可以提高 AD 临床试验的效果。我们将使用筛选神经测试的子分数为每个按性别和疾病阶段分层的亚组开发最佳 ML 模型。AD 神经影像学倡议(ADNI)的数据用于构建 ML 模型,用于三个组:有明显记忆问题的个体、早期轻度认知障碍(MCI)和晚期 MCI。数据进一步按疾病阶段(3 个级别)和性别(2 个类别)分为 6 组。结果定义为 PET 成像证实的 A[公式:见正文]状态,特征包括人口统计学数据、新确定的危险因素、筛选测试以及筛选测试的领域得分。我们还使用蒙特卡罗模拟研究和 k 折交叉验证技术来计算模型性能指标。我们还开发了一种基于随机排序的新特征选择方法,以避免搜索所有可能的特征组合。使用领域分数,确定的 SMC 男性最佳模型的准确率超过 90%,LMCI 女性的准确率高于 86%。与总分数相比,领域分数可以提高 ML 模型的预测精度。准确的 ML 预测模型可以识别 AD 临床试验的合适人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6605/7921140/ecc8fa55847e/41598_2021_83911_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验