Suppr超能文献

评估违约损失模型的辨别力。

Assessing the discriminatory power of loss given default models.

作者信息

Kazianka Hannes, Morgenbesser Anna, Nowak Thomas

机构信息

Department of Statistics, University of Klagenfurt, Klagenfurt, Austria.

Oesterreichische Nationalbank, Vienna, Austria.

出版信息

J Appl Stat. 2021 Apr 19;49(10):2700-2716. doi: 10.1080/02664763.2021.1910936. eCollection 2022.

Abstract

For banks using the Advanced Internal Ratings-Based Approach in accordance with Basel III requirements, the amount of required regulatory capital relies on the banks' estimates of the probability of default, the loss given default and the conversion factor for their credit risk portfolio. Therefore, for both model development and validation, assessing the models' predictive and discriminatory abilities is of key importance in order to ensure an adequate quantification of risk. This paper compares different measures of discriminatory power suitable for multi-class target variables such as in loss given default (LGD) models, which are currently used among banks and supervisory authorities. This analysis highlights the disadvantages of using measures that solely rely on pairwise comparisons when applied in a multi-class setting. Thus, for multi-class classification problems, we suggest using a generalisation of the well-known area under the receiver operating characteristic (ROC) curve known as the volume under the ROC surface (VUS). Furthermore, we present the R-package VUROCS, which allows for a time-efficient computation of the VUS as well as associated (co)variance estimates and illustrate its usage based on real-world loss data and validation principles.

摘要

对于按照巴塞尔协议III要求采用高级内部评级法的银行,所需监管资本的数额取决于银行对违约概率、违约损失率及其信用风险组合转换因子的估计。因此,对于模型开发和验证而言,评估模型的预测能力和区分能力对于确保风险的充分量化至关重要。本文比较了适用于多类别目标变量(如违约损失率(LGD)模型中目前银行和监管机构所使用的变量)的不同区分能力度量方法。该分析突出了在多类别环境中应用仅依赖成对比较的度量方法的缺点。因此,对于多类别分类问题,我们建议使用一种对著名的接收者操作特征(ROC)曲线下面积的推广,即ROC曲面下体积(VUS)。此外,我们展示了R包VUROCS,它能够高效地计算VUS以及相关的(协)方差估计,并基于实际损失数据和验证原则说明其用法。

相似文献

1
Assessing the discriminatory power of loss given default models.评估违约损失模型的辨别力。
J Appl Stat. 2021 Apr 19;49(10):2700-2716. doi: 10.1080/02664763.2021.1910936. eCollection 2022.

本文引用的文献

1
Dependence and independence: Structure and inference.依赖性与独立性:结构与推理
Stat Methods Med Res. 2017 Oct;26(5):2114-2132. doi: 10.1177/0962280215594198. Epub 2015 Jul 29.
3
Comparing three-class diagnostic tests by three-way ROC analysis.通过三元ROC分析比较三类诊断测试。
Med Decis Making. 2000 Jul-Sep;20(3):323-31. doi: 10.1177/0272989X0002000309.
4
Three-way ROCs.三元ROC曲线
Med Decis Making. 1999 Jan-Mar;19(1):78-89. doi: 10.1177/0272989X9901900110.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验