Suppr超能文献

基于动态超声的心脏分割算法。

A Heart Segmentation Algorithm Based on Dynamic Ultrasound.

机构信息

Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.

出版信息

Biomed Res Int. 2022 Jun 17;2022:1485584. doi: 10.1155/2022/1485584. eCollection 2022.

Abstract

The heart is one of the most important organs of the human body. The role of the heart is to promote blood flow and provide sufficient blood flow to organs and tissues. The research on the heart has important theoretical and clinical significance. Because of the noninvasive and intuitive display of ultrasound image, it can dynamically obtain the heart state and has become the main means to detect the heart dynamics. We analyze the characteristics of cardiac ultrasound image from the medical point of view and signal processing. The heart movement is periodic and rhythmic. The image signal can be decomposed. Firstly, the image is decomposed into high- and low-frequency signals to highlight different dimensional information. Then, the attention model was introduced, focusing on the heart region. Finally, the multidimensional network carrying model was established to achieve cardiac segmentation. The experimental results show that the AOM of the algorithm proposed in this paper reaches 92%, which has a certain degree of advancement and can assist doctors to make accurate diagnosis.

摘要

心脏是人体最重要的器官之一。心脏的作用是促进血液流动,并为器官和组织提供足够的血液流量。心脏的研究具有重要的理论和临床意义。由于超声图像具有非侵入性和直观的显示,可以动态获取心脏状态,因此已成为检测心脏动态的主要手段。我们从医学和信号处理的角度分析了心脏超声图像的特征。心脏运动是周期性和有节奏的。图像信号可以分解。首先,将图像分解为高、低频信号,以突出不同的维度信息。然后,引入注意模型,关注心脏区域。最后,建立多维网络携带模型,实现心脏分割。实验结果表明,本文提出的算法的 AOM 达到 92%,具有一定的先进性,可以辅助医生做出准确的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fef9/9232347/884c9364a66a/BMRI2022-1485584.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验