Suppr超能文献

利用基于全局授粉 CAT 蜂群优化器的 Chan-Vese 模型对早期胎儿超声序列进行解剖结构分割。

Anatomical structure segmentation from early fetal ultrasound sequences using global pollination CAT swarm optimizer-based Chan-Vese model.

机构信息

Electrical and Electronics Engineering, KCG College of Technology, Chennai, India.

Computer Science and Engineering, GKM College of Engineering and Technology, Chennai, Tamil Nadu, India.

出版信息

Med Biol Eng Comput. 2019 Aug;57(8):1763-1782. doi: 10.1007/s11517-019-01991-2. Epub 2019 Jun 12.

Abstract

The structure of an early fetal heart provides essential information for the diagnosis of fetus defects. Accurate segmentation of anatomical structure is a major challenging task because of the small size, low signal-to-noise ratio, and rapid movement of the ultrasound images. In recent years, active contour methods have found applications to ultrasound image segmentation. The familiar region-based Chan-Vese (RCV) model is a strong and flexible technique that is able to segment many types of images compared to other active contours. However, the solution trapping in local minima is the main drawback determined on the RCV model with the exposure of improper initial contours. Also, the RCV model showed poor results with this situation. More probably, the images having large intensity differences between global and local structures usually suffered from this problem. To solve this issue, we develop an improved version of the RCV model which is expected to achieve satisfactory segmentation performance, irrespective of the initial selection of the contour. We have formulated a new and hybrid meta-heuristic optimization algorithm namely global pollination-based CAT swarm (GPCATS) optimizer to solve the fitting energy minimization problem. In the GPCATS method, the global pollination step of the flower pollination algorithm (FPA) is used for improving the distance averaging of the CATS algorithm. The performance of the proposed method was analyzed on different fetal heart ultrasound videos acquired from 12 subjects. Each frame of each video was manually annotated in order to provide labels for training and validating the model. Experimental results of the proposed model proved that the precision of locating boundaries is improved greatly and requires only a reduced number of iterations (75% less) for convergence compared to the traditional RCV model. This proposed method also proved that our model not only enhances the accuracy of locating boundaries but also works stronger robustness than some other active contour methods. Graphical Abstract Anatomical structure segmentation from early fetal ultrasound sequences using GPCATS based Chan-Vese Model.

摘要

早期胎儿心脏的结构为胎儿畸形的诊断提供了重要信息。由于超声图像的尺寸小、信噪比较低以及快速运动等因素,准确分割解剖结构是一项极具挑战性的任务。近年来,主动轮廓方法已应用于超声图像分割。著名的基于区域的 Chan-Vese (RCV) 模型是一种强大而灵活的技术,与其他主动轮廓方法相比,它能够分割多种类型的图像。然而,RCV 模型的主要缺点是解在局部最小值处的捕获,这取决于初始轮廓的不当暴露。此外,RCV 模型在这种情况下表现不佳。更有可能的是,具有全局和局部结构之间较大强度差异的图像通常会受到此问题的影响。为了解决这个问题,我们开发了 RCV 模型的改进版本,期望无论轮廓的初始选择如何,都能实现令人满意的分割性能。我们提出了一种新的混合启发式元启发式优化算法,即全局授粉 CAT 群 (GPCATS) 优化器,用于解决拟合能量最小化问题。在 GPCATS 方法中,使用了花授粉算法 (FPA) 的全局授粉步骤来改进 CATS 算法的距离平均。在从 12 个对象采集的不同胎儿心脏超声视频上分析了所提出方法的性能。每个视频的每一帧都进行了手动注释,以便为模型的训练和验证提供标签。与传统的 RCV 模型相比,所提出模型的实验结果证明,定位边界的精度得到了极大提高,并且收敛所需的迭代次数减少了 75%。该方法还证明了,我们的模型不仅增强了定位边界的准确性,而且比其他一些主动轮廓方法具有更强的鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验