Mahto Amulya Kumar, Lodhi Chandrakant, Tripathi Yogesh Mani, Wang Liang
Department of Mathematics, Indian Institute of Technology, Patna, India.
neurIOT Technologies LPP, CoWorks, Golf, Course, Gurugram, India.
J Appl Stat. 2021 Feb 23;49(8):2064-2092. doi: 10.1080/02664763.2021.1889999. eCollection 2022.
In this paper, inference for a competing risks model is studied when latent failure times follow Kumaraswamy distribution and causes of failure are partially observed. Under generalized progressive hybrid censoring, existence and uniqueness of maximum likelihood estimators of model parameters are established. The confidence intervals are obtained by using asymptotic distribution theory. We further compute Bayes estimators along with credible intervals. In addition, inference is also discussed when there is order restricted shape parameters. The performance of all estimates is investigated using Monte-Carlo simulations. Finally, analysis of a real data set is presented for illustration purposes.
本文研究了在潜在失效时间服从Kumaraswamy分布且失效原因部分可观测的情况下,竞争风险模型的推断问题。在广义渐进混合删失下,建立了模型参数最大似然估计的存在性和唯一性。利用渐近分布理论得到了置信区间。我们还计算了贝叶斯估计及其可信区间。此外,还讨论了形状参数存在序约束时的推断问题。通过蒙特卡罗模拟研究了所有估计量的性能。最后,给出了一个实际数据集的分析作为示例。