Abo-Kasem Osama E, El Saeed Ahmed R, El Sayed Amira I
Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig, Egypt.
Department of Basic Sciences, Obour High Institute for Management & Informatics, Al Qalyubia, Egypt.
Sci Rep. 2023 Jul 26;13(1):12063. doi: 10.1038/s41598-023-38594-9.
In this paper, we study non-Bayesian and Bayesian estimation of parameters for the Kumaraswamy distribution based on progressive Type-II censoring. First, the maximum likelihood estimates and maximum product spacings are derived. In addition, we derive the asymptotic distribution of the parameters and the asymptotic confidence intervals. Second, Bayesian estimators under symmetric and asymmetric loss functions (Squared error, linear exponential, and general entropy loss functions) are also obtained. The Lindley approximation and the Markov chain Monte Carlo method are used to derive the Bayesian estimates. Furthermore, we derive the highest posterior density credible intervals of the parameters. We further present an optimal progressive censoring scheme among different competing censoring scheme using three optimality criteria. Simulation studies are conducted to evaluate the performance of the point and interval estimators. Finally, one application of real data sets is provided to illustrate the proposed procedures.
在本文中,我们研究基于渐进II型删失的Kumaraswamy分布参数的非贝叶斯估计和贝叶斯估计。首先,推导了最大似然估计和最大乘积间距。此外,我们还推导了参数的渐近分布和渐近置信区间。其次,还获得了对称和非对称损失函数(平方误差、线性指数和一般熵损失函数)下的贝叶斯估计量。使用林德利近似和马尔可夫链蒙特卡罗方法来推导贝叶斯估计。此外,我们推导了参数的最高后验密度可信区间。我们进一步使用三个最优性准则在不同的竞争删失方案中提出了一种最优渐进删失方案。进行了模拟研究以评估点估计量和区间估计量的性能。最后,提供了一个真实数据集的应用示例来说明所提出的方法。