Suppr超能文献

用于从菊粉高效合成L-鸟氨酸的代谢工程。

Metabolic Engineering of to Efficiently Synthesize L-Ornithine From Inulin.

作者信息

Zhu Yifan, Hu Yi, Yan Yifan, Du Shanshan, Pan Fei, Li Sha, Xu Hong, Luo Zhengshan

机构信息

State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.

College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China.

出版信息

Front Bioeng Biotechnol. 2022 Jun 8;10:905110. doi: 10.3389/fbioe.2022.905110. eCollection 2022.

Abstract

amyloliquefaciens is the dominant strain used to produce γ-polyglutamic acid from inulin, a non-grain raw material. B. amyloliquefaciens has a highly efficient tricarboxylic acid cycle metabolic flux and glutamate synthesis ability. These features confer great potential for the synthesis of glutamate derivatives. However, it is challenging to efficiently convert high levels of glutamate to a particular glutamate derivative. Here, we conducted a systematic study on the biosynthesis of L-ornithine by using inulin. First, the polyglutamate synthase gene pgsBCA of NB was knocked out to hinder polyglutamate synthesis, resulting in the accumulation of intracellular glutamate and ATP. Second, a modular engineering strategy was applied to coordinate the degradation pathway, precursor competition pathway, and L-ornithine synthesis pathway to prompt high levels of intracellular precursor glutamate for l-ornithine synthesis. In addition, the high-efficiency L-ornithine transporter was further screened and overexpressed to reduce the feedback inhibition of L-ornithine on the synthesis pathway. Combining these strategies with further fermentation optimizations, we achieved a final L-ornithine titer of 31.3 g/L from inulin. Overall, these strategies hold great potential for strengthening microbial synthesis of high value-added products derived from glutamate.

摘要

解淀粉芽孢杆菌是用于从菊粉(一种非谷物原料)生产γ-聚谷氨酸的主要菌株。解淀粉芽孢杆菌具有高效的三羧酸循环代谢通量和谷氨酸合成能力。这些特性赋予了合成谷氨酸衍生物的巨大潜力。然而,将高水平的谷氨酸高效转化为特定的谷氨酸衍生物具有挑战性。在此,我们利用菊粉对L-鸟氨酸的生物合成进行了系统研究。首先,敲除NB的聚谷氨酸合酶基因pgsBCA以阻碍聚谷氨酸合成,导致细胞内谷氨酸和ATP的积累。其次,应用模块化工程策略来协调降解途径、前体竞争途径和L-鸟氨酸合成途径,以促进细胞内高水平的前体谷氨酸用于L-鸟氨酸合成。此外,进一步筛选并过表达高效的L-鸟氨酸转运蛋白,以减少L-鸟氨酸对合成途径的反馈抑制。将这些策略与进一步的发酵优化相结合,我们从菊粉中获得了31.3 g/L的最终L-鸟氨酸产量。总体而言,这些策略在加强微生物合成源自谷氨酸的高附加值产品方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b65/9214239/083af3ac8595/fbioe-10-905110-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验