Department of Molecular, Cellular and Developmental Biology, and Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
Autophagy. 2022 Aug;18(8):1749-1751. doi: 10.1080/15548627.2022.2089957. Epub 2022 Jun 26.
Hypoxia is a type of stress caused by an insufficient supply of oxygen. Macroautophagy/autophagy, a well-conserved pathway, is induced during hypoxia; however, the exact mechanism by which autophagy is regulated in a hypoxic environment remains to be elucidated. A recent study by Li et al. shed light on how hypoxia can regulate early steps of autophagy induction. In this study, the authors discovered a novel symmetrical dimethylation of ULK1 at arginine 170 (R170me2s) that accumulates during hypoxia and increases ULK1 kinase activity by promoting autophosphorylation of ULK1 at T180. The authors identified PRMT5 and KDM5C as the primary methyltransferase and demethylase regulating ULK1 R170me2s and show that the lack of oxygen directly leads to reduced activity of KDM5C, which is likely the cause of accumulation of ULK1 R170me2s during hypoxia. Furthermore, the authors showed that ULK1 R170me2s promotes mitochondrial turnover and maintains cell viability in response to hypoxia stress. Together these data provide a new perspective on how the oxygen level regulates autophagy induction and show the physiological role of ULK1 R170me2s.
缺氧是由氧气供应不足引起的一种应激。巨自噬/自噬是一种保守的途径,在缺氧时被诱导;然而,自噬在缺氧环境下是如何被调控的具体机制仍有待阐明。最近,Li 等人的研究揭示了缺氧如何调控自噬诱导的早期步骤。在这项研究中,作者发现了 ULK1 精氨酸 170(R170me2s)的对称二甲基化的新现象,这种修饰在缺氧时积累,并通过促进 ULK1 在 T180 处的自身磷酸化来增加 ULK1 激酶活性。作者鉴定出 PRMT5 和 KDM5C 是主要的甲基转移酶和去甲基化酶,调控 ULK1 R170me2s,并表明缺氧直接导致 KDM5C 活性降低,这可能是 ULK1 R170me2s 在缺氧时积累的原因。此外,作者还表明,ULK1 R170me2s 促进线粒体周转,并在应对缺氧应激时维持细胞活力。这些数据为氧水平如何调控自噬诱导提供了新的视角,并展示了 ULK1 R170me2s 的生理作用。