Suppr超能文献

利用建筑材料作为平面机器人运动系统的一部分进行集体施工。

Leveraging Building Material as Part of the In-Plane Robotic Kinematic System for Collective Construction.

机构信息

Cluster of Excellence IntCDC: Integrative Computational Design and Construction for Architecture, University of Stuttgart and Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.

Institute for Computational Design and Construction, University of Stuttgart, 70174, Stuttgart, Germany.

出版信息

Adv Sci (Weinh). 2022 Aug;9(24):e2201524. doi: 10.1002/advs.202201524. Epub 2022 Jun 24.

Abstract

Although collective robotic construction systems are beginning to showcase how multi-robot systems can contribute to building construction by efficiently building low-cost, sustainable structures, the majority of research utilizes non-structural or highly customized materials. A modular collective robotic construction system based on a robotic actuator, which leverages timber struts for the assembly of architectural artifacts as well as part of the robot body for locomotion is presented. The system is co-designed for in-plane assembly from an architectural, robotic, and computer science perspective in order to integrate the various hardware and software constraints into a single workflow. The system is tested using five representative physical scenarios. These proof-of-concept demonstrations showcase three tasks required for construction assembly: the ability of the system to locomote, dynamically change the topology of connecting robotic actuators and timber struts, and collaborate to transport timber struts. As such, the groundwork for a future autonomous collective robotic construction system that could address collective construction assembly and even further increase the flexibility of on-site construction robots through its modularity is laid.

摘要

虽然集体机器人施工系统开始展示多机器人系统如何通过高效地建造低成本、可持续的结构来为建筑施工做出贡献,但大多数研究都使用非结构或高度定制的材料。本研究提出了一种基于机器人执行器的模块化集体机器人施工系统,该系统利用木材支柱来组装建筑制品以及机器人主体的一部分来实现移动。该系统从建筑、机器人和计算机科学的角度进行了平面内装配的协同设计,以便将各种硬件和软件约束集成到单个工作流程中。该系统使用五个代表性的物理场景进行了测试。这些概念验证演示展示了施工装配所需的三个任务:系统的移动能力、动态改变连接机器人执行器和木材支柱的拓扑结构的能力,以及协作运输木材支柱的能力。因此,为未来的自主集体机器人施工系统奠定了基础,该系统可以解决集体施工装配问题,并且通过其模块化进一步提高现场施工机器人的灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d8c/9404414/b23ab60776a1/ADVS-9-2201524-g013.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验