Suppr超能文献

水解亚胺培南的烯胺和亚胺形式在金属β-内酰胺酶活性中心以及水溶液中的相互作用。

Interplay between the Enamine and Imine Forms of the Hydrolyzed Imipenem in the Active Sites of Metallo-β-lactamases and in Water Solution.

机构信息

Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow 119071, Russia.

Department of Chemistry, Interdisciplinary Scientific and Educational School of Moscow University "Brain, Cognitive Systems, Artificial Intelligence", Lomonosov Moscow State University, Moscow 119991, Russia.

出版信息

J Chem Inf Model. 2022 Dec 26;62(24):6519-6529. doi: 10.1021/acs.jcim.2c00539. Epub 2022 Jun 27.

Abstract

Deactivation of the β-lactam antibiotics in the active sites of the β-lactamases is among the main mechanisms of bacterial antibiotic resistance. As drugs of last resort, carbapenems are efficiently hydrolyzed by metallo-β-lactamases, presenting a serious threat to human health. Our study reveals mechanistic aspects of the imipenem hydrolysis by bizinc metallo-β-lactamases, NDM-1 and L1, belonging to the B1 and the B3 subclasses, respectively. The results of QM(PBE0-D3/6-31G**)/MM simulations show that the enamine product with the protonated nitrogen atom is formed as the major product in NDM-1 and as the only product in the L1 active site. In NDM-1, there is also another reaction pathway that leads to the formation of the ()-enantiomer of the imine form of the hydrolyzed imipenem; this process occurs with the higher energy barriers. The absence of the second pathway in L1 is due to the different amino acid composition of the active site loop. In L1, the hydrophobic Pro226 residue is located above the pyrroline ring of imipenem that blocks protonation of the carbon atom. Electron density analysis is performed at the stationary points to compare reaction pathways in L1 and NDM-1. Tautomerization from the enamine to the imine form likely happens in solution after the dissociation of the hydrolyzed imipenem from the active site of the enzyme. Classical molecular dynamics simulations of the hydrolyzed imipenem in solution, both with the neutral enamine and the negatively charged N-C-C fragment, demonstrate a huge diversity of conformations. The vast majority of conformations blocks the C-atom from the side required for the ()-imine formation upon tautomerization. Thus, according to our calculations, formation of the ()-imine is more likely. QM(PBE0-D3/6-31G**)/MM molecular dynamics simulations of the hydrolyzed imipenem with the negatively charged N-C-C fragment followed by the Laplacian bond order analysis demonstrate that the N═C-C resonance structure is the most pronounced that facilitates formation of the imine form. The proposed mechanism of the enzymatic enamine formation and its subsequent tautomerization to the imine form in solution is in agreement with the recent spectroscopic and NMR studies.

摘要

β-内酰胺抗生素在β-内酰胺酶活性部位的失活是细菌抗生素耐药性的主要机制之一。碳青霉烯类抗生素作为最后手段的药物,被金属β-内酰胺酶有效地水解,对人类健康构成严重威胁。我们的研究揭示了属于 B1 和 B3 亚类的金属β-内酰胺酶 NDM-1 和 L1 水解亚胺培南的机制方面。QM(PBE0-D3/6-31G**)/MM 模拟的结果表明,在 NDM-1 中形成了带质子化氮原子的烯胺产物,而在 L1 活性部位仅形成了该产物。在 NDM-1 中,还有另一条导致水解亚胺培南的亚胺形式的()-对映体形成的反应途径;此过程发生的能量壁垒较高。L1 中不存在第二条途径是由于活性部位环的氨基酸组成不同。在 L1 中,疏水性 Pro226 残基位于吡咯啉环上方,阻碍了碳原子的质子化。在稳定点处进行电子密度分析以比较 L1 和 NDM-1 中的反应途径。烯胺到亚胺形式的互变异构可能在水解亚胺培从酶活性部位解离后在溶液中发生。在溶液中对水解亚胺培进行经典分子动力学模拟,无论是中性烯胺还是带负电荷的 N-C-C 片段,都证明了构象的多样性。绝大多数构象都阻止了 C 原子在互变异构时从所需的()-亚胺形成的一侧进入。因此,根据我们的计算,()-亚胺的形成更有可能。带负电荷的 N-C-C 片段水解亚胺培的 QM(PBE0-D3/6-31G**)/MM 分子动力学模拟,随后进行拉普拉斯键级分析表明,N═C-C 共振结构最为明显,有利于亚胺形式的形成。酶烯胺形成及其随后在溶液中向亚胺形式的互变异构的提议机制与最近的光谱和 NMR 研究一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验